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Executive Summary

The integral equation constrained optimization approach to finding three-dimensional minimum-drag shapes
for bodies translating in viscous incompressible fluid has been developed. The approach relies on the theory of
generalized analytic functions for obtaining efficient integral equations for 3D boundary-value problems with
linear partial differential equations (PDEs), e.g., the Stokes and Oseen equations for viscous incompressible
fluid, linearized equations of magnetohydrodynamics (MHD) etc. It assumes the following steps: (i) identify-
ing a class of generalized analytic functions related to the PDEs; (ii) representing corresponding fields, e.g.,
the fluid velocity field, the electromagnetic field etc., in terms of generalized analytic functions from the identi-
fied class; and (iii) reformulating boundary-value problems for the involved fields as boundary-value problems
for generalized analytic functions, which could then be reduced to integral equations based on the generalized
Cauchy integral formula. Solutions of the obtained integral equations can be represented by finite function
series with series coefficients determined by quadratic error minimization. The framework of generalized an-
alytic functions has been developed in application to 3D Stokes and Oseen flows, two-phase Stokes flows and
3D magnetohydrodynamic flows governed by linearized MHD equations.

In shape optimization problems, the suggested approach replaces 3D boundary-value problems with govern-
ing PDEs by corresponding boundary integral equations. Minimum-drag shapes, represented in finite function
series form, are then found by the adjoint equation-based method with a gradient-based algorithm, in which
the gradient for shape series coefficients is determined analytically. Compared to PDE constrained optimiza-
tion coupled with the finite element method (FEM), the approach reduces dimensionality of the flow problems,
solves the issue with region truncation in exterior problems, finds minimum-drag shapes in semi-analytical
form, and has fast convergence. Its efficiency has been demonstrated in solving three drag minimization prob-
lems under the Oseen approximation of the Navier-Stokes equations for different Reynolds numbers: (i) for a
body of constant volume, (ii) for a torpedo with only fore and aft noses being optimized, and (iii) for a body
of constant volume following another body of fixed shape (e.g. torpedo chasing a target). The minimum-drag
shapes in problem (i) are in good agreement with the existing optimality conditions and conform to those ob-
tained by PDE constrained optimization. Problem (ii) has shown that the minimum-drag shape for the torpedo
is fore-aft-symmetric, whereas problem (iii) has revealed that the minimum-drag shape for the trailing body is
only slightly more prolate than the one in problem (i) for same Reynolds number.

For MHD flows in the presence of aligned magnetic fields, the necessary optimality condition for the
minimum-drag shapes subject to a volume constraint has been obtained analytically. It has been shown that re-
gardless of magnitudes of Hartmann number, Reynolds number, and magnetic Reynolds number, the minimum-
drag shapes are fore-and-aft symmetric and have conic endpoints with the angle of 2π/3. For fixed Reynolds
and magnetic Reynolds numbers, the drag reduction as a function of the Cowling number is smallest at 1. In
considered MHD problems, the drag coefficients for the minimum-drag shapes and minimum-drag spheroids
are sufficiently close.

The project involved Postdoctoral Associate Anton Molyboha from the Department of Mathematical Sci-
ences, Stevens Institute of Technology.
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Shape Optimization in Magnetohydrodynamics

1 Introduction

Industrial applications of magnetohydrodynamics (MHD) include but are not limited to MHD flow control
schemes for hypersonic vehicles [19], torpedo drag reduction with MHD boundary-layer control [2], and MHD
propulsion systems [25].

The steady flow of an electrically conducting viscous incompressible fluid in the presence of magnetic field
and with neglected thermal effects can be characterized by three independent parameters: Hartmann number
M, Reynolds number R, and magnetic Reynolds number Rm. The Hartmann number is the ratio of the Lorentz
force to the viscous force in the Navier-Stokes equations (when M = 0, the velocity field is uncoupled from the
electromagnetic field), whereas the magnetic Reynolds number is interpreted as the ratio of magnetic advection
to magnetic diffusion in the combination of Ohm’s and Ampere’s laws (when Rm = 0, the magnetic field is
uncoupled from the velocity field). The ratio of the magnetic forces to the inertial forces is characterized by the
Cowling number S,1 which can be expressed as M2/(Rm R) when R 6= 0 and Rm 6= 0.

An MHD problem that has attracted much of the attention is arguably the one of an electrically conducting
flow past a nonmagnetic sphere in the presence of a uniform magnetic field being aligned with the undisturbed
flow; see e.g. [7, 12, 27, 13, 14]. For this problem, Figure 1 shows the drag for the sphere normalized to the
sphere Stokes drag as a function of S for R = Rm = 1 (curve a); R = 1, Rm = 3 (curve b); R = Rm = 2 (curve
c); R = 3, Rm = 1 (curve d); and R = Rm = 3 (curve e). At S = 1, the drag attains minimum and is nonsmooth;
see [13, 12]. Namely the fact that the sphere drag at S = 1 is nonsmooth is remarkable. It poses the research
questions: If the sphere is replaced by an arbitrary nonmagnetic body of revolution, what is body’s shape that
has the smallest drag subject to a volume constraint and how does it depend on S? Are there any qualitative
differences in the minimum-drag shapes for S < 1, S = 1, and S > 1? How does drag reduction depend on S?
Answering these questions is the subject of this study.
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Figure 1: Drag for the unit sphere normalized to the sphere Stokes drag as a function of S for R = Rm = 1
(curve a); R = 1, Rm = 3 (curve b); R = Rm = 2 (curve c); R = 3, Rm = 1 (curve d); and R = Rm = 3 (curve e).

The challenge in addressing the posed questions is that the traditional PDE constrained optimization ap-
proach coupled with the finite element method (FEM) is slowly converging and inaccurate in general. The
second deficiency is attributed to the fact that being applied to external problems, the approach truncates and
discretizes an external domain and finds minimum-drag shapes point wisely.

Our approach reduces the MHD problem to boundary integral equations, derives the optimality condition
for the minimum-drag shapes analytically, and obtains minimum-drag shapes in a functional series form. To

1This number is also denoted by Co and is also called “pressure” number in [27, 13].
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this end, the MHD equations are linearized, and the velocity, pressure and magnetic fields in and out the
body are represented by four generalized analytic functions. Under the assumption that the fluid and body
are both nonmagnetic and have same magnetic permeability, the axially symmetric MHD problem is reduced
to integral equations for the boundary values of two generalized analytic functions based on the generalized
Cauchy integral formula. The Hartmann number is assumed to be nonzero since when M = 0, the velocity field
is uncoupled from the magnetic field. With M 6= 0, three cases are studied separately: (a) Rm 6= 0, RmR 6= M2

(S 6= 1); (b) Rm = 0; and (c) RmR = M2 (S = 1). The reason for this is that in each case, solving the MHD
problem involves different number of generalized analytic functions from two classes: r-analytic functions and
H-analytic functions. This is the mathematical explanation of why the case S = 1 is special.

1.1 r-Analytic and H-Analytic Functions

A function F(x,y) =U(x,y)+ iV (x,y) with i =
√
−1 is called generalized analytic or pseudo-analytic if its real

and imaginary parts, U and V , respectively, satisfy the so-called Carleman or Bers-Vekua system [4, 26]

∂U
∂x
− ∂V

∂y
+aU +bV = 0,

∂U
∂y

+
∂V
∂x

+ cU +dV = 0, (1)

where a = a(x,y), b = b(x,y), c = c(x,y), and d = d(x,y) are real-valued functions. For example, for a ≡
b ≡ c ≡ d ≡ 0, the system (1) defines ordinary analytic functions. Generalized analytic functions arise in
various areas of applied mathematics including hydrodynamics, gas dynamics, theory of elasticity, heat transfer,
electromagnetism, quantum mechanics, etc.; see [6, 26, 21, 1]. Their theory has been extensively developed
since the mid-20th century and extends the majority of results for ordinary analytic functions, e.g. the formal
powers [5, 4] and the Cauchy integral formula [4, 26, 21, 8].

Several important classes of generalized analytic functions arise from the relationship

curlΦ+[a×Φ] =−gradΨ, divΦ = 0 (2)

for a vector field Φ and scalar field Ψ, where a is a known vector function. This relationship is frequently
encountered in problems of applied mathematics. For example, for Ψ = 0 and a = 0, (2) simplifies to an
irrotational solenoidal field Φ found in electrostatics and ideal fluid, whereas for a = 0, it defines so-called
related potentials Ψ and Φ, e.g. the pressure and vorticity in the Stokes equations, electric potential and
magnetic field in conductive materials, etc.; see [31]. For a 6= 0 and Ψ 6= 0, (2) arises in the Maxwell equations
for quasi-stationary electromagnetic fields, in the Oseen equations and linearized MHD equations; see [30,
Example 4].

Let (r,ϕ,z) be a cylindrical coordinate system with the basis (er,eϕ,k). In the axially symmetric case with
the z axis being the axis of revolution, let Φ = Φr(r,z)er + Φz(r,z)k, Ψ = 0, and a = −2λk, where λ is a
constant. Then for U = e−λz Φz and V = e−λz Φr, (2) reduces to

∂U
∂r

=
(

∂

∂z
−λ

)
V,

(
∂

∂z
+λ

)
U =−

(
∂

∂r
+

1
r

)
V, (3)

which is a special case of (1) and implies that(
∆0−λ

2)U = 0 and
(
∆1−λ

2)V = 0, (4)

where ∆k denotes the so-called k-harmonic operator: ∆k ≡ ∂2/∂r2 + r−1∂/∂r + ∂2/∂z2− k2/r2. The functions
U and V satisfying (3) form an H-analytic function G = U + iV of a complex variable ζ = r + iz. For λ = 0,
(3) defines a so-called r-analytic function and is arguably the most studied system among various classes of
generalized analytic functions. It arises in the axially symmetric theory of elasticity [21, 1] and in the axially
symmetric Stokes and Oseen flows [35, 34, 31, 28, 29, 30]. Since an r-analytic function satisfies (4) for λ = 0, it
is also referred to as 0-harmonically analytic function [28]. Both classes of r-analytic and H-analytic functions
are instrumental in constructing solutions to axially symmetric MHD problems.
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1.2 Generalized Cauchy Integral Formula and Series Representation

Let G+ be a generalized analytic function in a bounded open region D+ in the right-half rz-plane (D+ may
contain parts of the z axis). The boundary of D+ is assumed to be a piece-wise smooth positively oriented
curve `, which is either closed or open with the endpoints lying on the z axis.2 Let D− be the complement of
D+∪ ` in the right-half rz-plane (D− is unbounded), and let G− be a generalized analytic function in D− that
vanishes at infinity. For convenience, an arbitrary function f (r,z) will be denoted by f (ζ) without assuming
its analyticity. Let G±(ζ) satisfy the Hölder condition3 on `, and let `′ be the reflection of ` over the z axis.
Then under the assumption of the symmetry condition G±(−ζ) = G±(ζ), the Cauchy integral formula for G±

is given by [1, 21, 26]:

G±(ζ) =± 1
2πi

ffi
`

S
`′

G±(τ)W (ζ,τ)dτ, ζ ∈D±, (5)

where ζ = r + iz, τ = r1 + iz1 and W (ζ,τ)≡W (r,z;r1,z1) is a generalized Cauchy kernel. If the the boundary
` in smooth, then on `, G±(ζ) satisfies the generalized Sokhotski-Plemelj formula:

G±(ζ) =
1
2

G±(ζ)± 1
2πi

ffi
`

S
`′

G±(τ)W (ζ,τ)dτ, ζ ∈ `. (6)

If ` is piece-wise smooth (has salient points), in particular if the endpoints of ` lie on the z axis and the angle
between ` and the z axis at one of the endpoints is not π/2 (conic endpoint), then at a salient point of `, the
coefficient 1/2 in the generalized Sokhotski-Plemelj forlmula (6) is replaced by a finite function of the angle
between tangents at the salient point; see [1, (31.13a), (31.13b)] and [33, (3.7)].

Let Wr and WH denote the generalized Cauchy kernels for r-analytic and H-analytic functions, respectively.
For r-analytic functions, Wr is given in [1], [28, Theorem 2] and [33, Theorem 3.2]. Theorem 1 and Corollary
4 in [30] present two forms for WH with λ > 0. The next result extends the Cauchy integral formula for
H-analytic functions for arbitrary λ 6= 0.

Theorem 1 Let G± be an H-analytic function in D± that satisfies (3) with λ 6= 0 and satisfies the Hölder
condition on `. Suppose G±(−ζ) = G±(ζ). Then the generalized Cauchy integral formula (5) takes the form

G±(ζ) =
1

2πi

ffi
`

S
`′

G(τ)WH(ζ,τ)dτ =
1

2πi

ˆ
`
K1(ζ,τ,λ) Re

[
G±(τ)dτ

]
+ iK2(ζ,τ,λ) Im

[
G±(τ)dτ

]
, ζ ∈D±,

(7)
where

K1(ζ,τ,λ) =−r1

ˆ
π

0

e−|λ|ρ(ζ,τ,t)

ρ(ζ,τ, t)

(
(ζ− r1 cos t + iz1)(1+ |λ|ρ(ζ,τ, t))

ρ(ζ,τ, t)2 − iλ

)
dt,

K2(ζ,τ,λ) =−r1

ˆ
π

0

[
e−|λ|ρ(ζ,τ,t)

ρ(ζ,τ, t)2 (r cos t− r1)(1+ |λ|ρ(ζ,τ, t))+ i
(z1− z)cos t

ρ(ζ,τ, t)2

+ i
e−|λ|ρ(ζ,τ,t)−eλ(z1−z)

∆(ζ,τ, t)

(
cos t +

(r− r1 cos t)(r1− r cos t)(2∆(ζ,τ, t)− z1 + z)
ρ(ζ,τ, t)2∆(ζ,τ, t)

)
+ie−|λ|ρ(ζ,τ,t)

(
2λcos t + |λ|(r− r1 cos t)(r1− r cos t)

ρ(ζ,τ, t)∆(ζ,τ, t)

)]
dt

ρ(ζ,τ, t)
,

ρ(ζ,τ, t) =
√

r2 + r2
1−2rr1 cos t +(z− z1)2,

∆(ζ,τ, t) = z1− z+ρ(ζ,τ, t)signλ.

2Open segments of the z axis that D+ may contain are not parts of `.
3This condition means that for some parametrization ζ(t) of `, the boundary value f (ζ(t)) satisfies | f (ζ(t2))− f (ζ(t1))| ≤ c |t2−t1|β

for all t1 and t2, some β ∈ (0,1], and nonnegative constant c.
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Proof. The proof is similar to that of Theorem 1 in [30]. �

For the region exterior to a sphere, Example 5 and Proposition 2 in [30] provide series representations for
r-analytic functions and H-analytic functions with λ > 0, respectively. The next proposition generalizes the
representation for H-analytic functions for any λ 6= 0.

Proposition 1 (H-analytic function in the region exterior to a sphere) For the region exterior to a sphere
centered at the origin, an H-analytic function satisfying (3) for λ 6= 0 and vanishing at infinity can be rep-
resented in the spherical coordinates (R,ϑ,ϕ) by

H(R,ϑ) = R−
1
2 ∑

∞

n=1 An

(
Ln(cosϑ)Kn+ 1

2
(|λ|R)− signλ L−n(cosϑ)Kn− 1

2
(|λ|R)

)
, (8)

where Ln(cosϑ) = n Pn(cosϑ)− i P(1)
n (cosϑ), P(k)

n (cosϑ) is the associated Legendre polynomial of the first kind
of order n and rank k (for k = 0, the superscript is omitted), Kn+ 1

2
(·) is a modified spherical Bessel function of

the third kind (see [3, Sec. 7.2.6]), and real-valued coefficients An are such that the corresponding series (8)
converge for all θ ∈ [0,π] and R greater than or equal to the radius of the sphere.

Proof. The proof is analogous to the proof of Proposition 2 in [30]. �

2 Magnetohydrodynamics

The steady flow of an electrically conducting viscous incompressible fluid is governed by the MHD equations
ρ(U ·grad)U =−grad℘+ρν∆U+µ [J×H],
curlH = 4πJ, J = σ(E+µ [U×H]) ,
curlE = 0, divU = 0, divH = 0,

(9)

where U is the fluid velocity, ℘ is the pressure in the fluid, E and H are the electric and magnetic fields,
respectively, J is the current density, ν is the kinematic viscosity, ρ is the fluid density, µ is the magnetic
permeability, and σ is the conductivity; see [22, 23, 16].

Suppose a nonmagnetic solid body of revolution is immersed in the uniform flow in the presence of mag-
netic field. At infinity, the flow and magnetic field are assumed to be constant and aligned with the z-axis, i.e.
U|

∞
= V∞ k and H|

∞
= H∞ k, where V∞ and H∞ are constants. Also, the body’s axis of revolution is parallel to

the z-axis. Under different assumptions, this MHD problem was considered in [9, 13, 14, 15, 11, 24, 10]. Let u
be the disturbance of the velocity field: U = V∞ (k+u), and let h+ and h− be the disturbances of the magnetic
field in and out the body, respectively: H = H∞ (k+h+) in the body and H = H∞ (k+h−) out the body. On the
boundary S of the body and at infinity, u and ℘satisfy the conditions

u|S =−k, u|
∞

= 0, ℘|
∞

= 0. (10)

Inside the body, the electric field is zero, whereas the magnetic field satisfies curlH = 0 and divH = 0, or
in terms of the disturbance h+,

curlh+ = 0, divh+ = 0. (11)

As in [9, 14], it is assumed that the fluid and body are nonmagnetic and have same magnetic permeability. In
this case, the magnetic field is continuous across the boundary of the body4 and also h− vanishes at infinity:

h+∣∣
S = h−

∣∣
S , h−

∣∣
∞

= 0. (12)

4If the fluid and body have different magnetic permeability then across the body’s boundary, the tangential component of the
magnetic field H and the normal component of the magnetic induction B should be continuous.
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The problem (9)–(12) is axially symmetric. In this case, the velocity, pressure and electromagnetic field are
independent of the angular coordinate ϕ, i.e.

u = ur(r,z)er +uz(r,z)k, ℘=℘(r,z), h± = h±r (r,z)er +h±z (r,z)k, E = Eϕ(r,z)eϕ.

The equation curlE = 0 implies that r Eϕ = c, where c is a constant. Since [u×H] and curlH vanish at infinity,
we have c = 0, and consequently, E = 0.

Rescaling the linear dimensions, velocity, pressure, and magnetic field by a, V∞, V∞ρν/a, and H∞, respec-
tively, where a is the half of the diameter of the body, and assuming u and h− to be small, we can rewrite
equations (9) without E and J in the dimensionless linearized form

R(k ·grad)u =−grad℘+∆u+M2[[(u−h−)×k]×k],
curlh− = Rm [(u−h−)×k],
divu = 0, divh− = 0.

(13)

where R = V∞ a/ν is the Reynolds number, Rm = 4πV∞ aµσ is the magnetic Reynolds number, and M =
µH∞ a

√
σ/(ρν) is the Hartmann number.

For M = 0, the first equation in (13) reduces to the Oseen equations, and the problem for the velocity and
pressure becomes uncoupled from the magnetic field. For solving the Oseen equations, see e.g. [30]. For
M 6= 0, there are three cases to analyze:

(a) Rm 6= 0 and RmR 6= M2: A solution to (13) is represented by two H-analytic functions and one r-analytic
function, whereas a solution to (11) is given by a single r-analytic function.

(b) Rm = 0: The magnetic field is constant everywhere, i.e. h± = 0, and a solution to (13) is represented by
two H-analytic functions. (The case of R = 0 yields no simplification.)

(c) RmR = M2 (S = 1): A solution to (13) is represented by one H-analytic function and two r-analytic
functions, and a solution to (11) is given by a single r-analytic function.

Let ` be the positively oriented cross section of the body in the right-half rz-plane (r > 0), and let `′ be the
reflection of ` over the z axis. The curve ` divides the right-half rz-plane into interior bounded region D+ and
exterior unbounded region D−.

Theorem 2 (solution representation, case (a)) In the axially symmetric case with M 6= 0 and RmR 6= M2, a
solution to (13) and (11) is given by

uz + iur =
1

λ1−λ2

(
(1−2λ2κ)eλ1 z G1− (1−2λ1κ)eλ2 z G2

)
− 1

RmR−M2 G−3 , (14)

h−z + ih−r =− 2κ
λ1−λ2

(
λ2 eλ1 z G1−λ1 eλ2 z G2

)
− 1

RmR−M2 G−3 , (15)

h+
z + ih+

r = G+
3 , (16)

where G1 and G2 are H-analytic functions in D− satisfying (3) with λ = λ1,2 = R+Rm±
√

(R−Rm)2+4M2

4 , respec-
tively, and vanishing at infinity; G+

3 and G−3 are r-analytic functions in D+ an D−, respectively, with G−

vanishing at infinity; and κ = Rm/
(
RmR−M2

)
.

In this case, the pressure and scalar vortex function ω = eϕ · curlu (i.e. curlu = ωeϕ) are determined by

℘=
2(Rκ−1)

λ1−λ2

(
λ2 eλ1 z Re[G1]−λ1 eλ2 z Re[G2]

)
+

R

RmR−M2 Re[G−3 ], (17)

ω =
1

λ1−λ2

(
(R−2λ2)eλ1 z Im[G1]− (R−2λ1)eλ2 z Im[G2]

)
. (18)
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Proof. With the identity (k ·grad)u =−curl [k×u], the first equation in (13) can be rewritten in the form

curl(ω−R [k×u])−M2 [k× [k× (u−h−)]]+grad℘= 0, (19)

where ω = curlu is the vorticity. The continuity equation divu = 0 implies that u and ω satisfy the identity

curl[k×u]+grad(k ·u)− [k×ω] = 0, (20)

whereas divh− = 0 implies a similar identity for h−

[k× curlh−] = curl[k×h−]+grad(k ·h−),

with which the second equation in (13) can be represented in the form:

curl[k×h−]+grad(k ·h−)+Rm [k× [k× (u−h−)]] = 0. (21)

Forming a linear combination of (19), (20), and (21) with constant weights β1, β2, and β3, respectively, we have

curl(β1ω +[k× ((β2−β1R)u+β3 h−)])− [k× (β2ω +(β1M
2−β3Rm)[k× (u−h−)])]

+grad(β1℘+β2(k ·u)+β3(k ·h−)) = 0.
(22)

Let β3 =−(β2−β1R) and (β2−β1R)/β1 = (β1M
2−β3Rm)/β2, then (β2/β1)2− (R+Rm)β2/β1 +RmR−

M2 = 0, whence β2/β1 = 2λk, k = 1,2, and (22) becomes a particular case of (2):

curlΛk−2λk [k×Λk]+gradΨk = 0, divΛk = 0, k = 1,2, (23)

where
Λk = ω +(2λk−R) [k× (u−h−)], Ψk =℘+2λk (k ·u)+(R−2λk)(k ·h−). (24)

In the axially symmetric case, (23) reduces to the system (3) determining H-analytic functions. Let Λk = Λk eϕ,
k = 1,2, and ω = ωeϕ. In this case,

Ψk + iΛk = 2eλk z Gk, k = 1,2, (25)

where Gk are H-analytic functions defined in the theorem.
On the other hand, if β2 = 0 and β1M

2−β3Rm = 0 then (22) becomes the relationship for related potentials:

curlΛ3 +gradΨ3 = 0, divΛ3 = 0, (26)

where
Λ3 = Rmω +[k× (M2h−−RmRu)], Ψ3 = Rm℘+M2(k ·h−). (27)

In the axially symmetric case, Λ3 = Λ3 eϕ and (26) determines an r-analytic function G−3 in D−:

Ψ3 + iΛ3 = G−3 . (28)

Equations (23)–(28) can be reformulated in the complex form

2eλk z Gk =℘+ iω+2λk(uz + iur)− iRur +(R−2λk)(h−z + ih−r ), k = 1,2,

G−3 = Rm(℘+ iω)− iRRm ur +M2(h−z + ih−r ),

from which the representations (14), (15), (17), and (18) follow. The condition M 6= 0 guarantees that λ1 6= λ2.
Finally, in the axially symmetric case, h+, being an irrotational solenoidal field (see (11)), can be repre-

sented by (16). �
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Corollary 1 (solution representation: case (b)) In the axially symmetric case with M 6= 0 and Rm = 0, the
magnetic disturbance is zero, i.e. h± ≡ 0, and the velocity, pressure, and vorticity that solve (13) can be
represented by

uz + iur =
1

λ1−λ2

(
eλ1 z G1− eλ2 z G2

)
,

℘+ iω = eλ1 z
(

G1−
R

2(λ1−λ2)
G1

)
+ eλ2 z

(
G2 +

R

2(λ1−λ2)
G2

)
,

(29)

where G1 and G2 are H-analytic functions satisfying (3) with λ = λ1,2 = 1
4

(
R±
√

R2 +4M2
)

, respectively,
and vanishing at infinity.

Detail. For Rm = 0, (15) reduces to h−z + ih−r = M−2 G−3 which with (16) and (12) implies M−2 G−3 = G+
3 on `.

Consequently, since G−3 vanishes at infinity, by the Sokhotski-Plemelj formula (6), G±3 ≡ 0 in D±, respectively,
and (29) follows from (14), (17), and (18). �

Corollary 2 For M 6= 0 and Rm = R = 0 the representation (29) simplifies to

uz + iur =
1
M

(
eMz/2 G1− e−Mz/2 G2

)
, ℘+ iω = eMz/2 G1 + e−Mz/2 G2,

where G1 and G2 are H-analytic functions satisfying (3) with λ = M/2 and λ = −M/2, respectively. It is
similar to the solution form suggested by Chester [9] in the case of R = Rm = 0.

Corollary 3 For M = 0 and R 6= 0, the representation (29) reduces to the representation (22)–(23) in [30] for
the velocity, pressure and vorticity for the axially symmetric Oseen flow of nonconducting fluid.

Theorem 3 (solution representation, case (c)) In the axially symmetric case with M 6= 0 and RmR = M2, a
solution to (13) and (11) is given by

uz + iur =
1

R+Rm

(
2R

R+Rm
eλz G1 +

(
Rm

(
z− i

2
r
)
− R

R+Rm

)
G2 +Rm G−3

)
, (30)

h−z + ih−r =
Rm

R+Rm

(
− 2

R+Rm
eλz G1 +

(
z− i

2
r +

1
R+Rm

)
G2 +G−3

)
, (31)

h+
z + ih+

r = G+
3 , (32)

where λ = (R+Rm)/2, G1 is an H-analytic function in D− that satisfies (3) with λ and vanishes at infinity; G2
and G−3 are r-analytic functions in D− and vanishing at infinity; and G+

3 is an r-analytic function in D+.
In this case, the pressure and vortex function are determined by

℘=
RmR

R+Rm

(
2

R+Rm
eλz Re[G1]−Re

[(
z− i

2
r +

1
R+Rm

)
G2

]
−Re[G−3 ]

)
+Re[G2], (33)

ω =
1

R+Rm

(
2Reλz Im[G1]+Rm Im[G2]

)
. (34)

Proof. The proof is partially based on the proof of Theorem 2. When RmR = M2, the relationships (23)–(25)
hold for λ1 = (R+Rm)/2 and λ2 = 0. For λ1 = (R+Rm)/2, (25) simplifies to

2e(R+Rm)z/2 G1 =℘+ iω+(R+Rm)(uz + iur)− iRur−Rm(h−z + ih−r ), (35)
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where G1 is the H-analytic function defined in this theorem. The case of λ2 = 0 means that (23) reduces to the
relationship (26) for the related potentials. Consequently, a different approach is required. Since RmR = M2,
multiplying (21) by R and adding to (19), we obtain

curl(ω−R[k× (u−h−)])+grad(℘+R(k ·h−)) = 0,

which with the second equation in (13) and conditions divu = 0 and divh− = 0 can be rewritten as

∆(u+(R/Rm)h−) = grad(℘+R(k ·h−)), div(u+(R/Rm)h−) = 0. (36)

The system (36) is similar to the Stokes equations for the viscous incompressible fluid. In the axially
symmetric case, its solution is given by Proposition 7 in [28]

uz + iur +
R

Rm
(h−z + ih−r ) =

(
z− i

2
r
)

G2 +G−3 ,

℘+ iω− iRur +R(h−z + ih−r ) = G2,

(37)

where G2 and G−3 are the r-analytic functions defined in this theorem. Observe that the conditions M 6= 0 and
RmR = M2 guarantee that Rm 6= 0. The representations (30), (31), (33), and (34) follow from (35) and (37),
whereas (32) remains same as in Theorem 2. �

The advantage of the representations (14)–(18), (29), and (30)–(34) compared to the existing forms, e.g.
in [9], is that these representations, being linear combinations of the generalized analytic functions, involve
no derivates of unknown functions and represent simultaneously all three: the velocity, vorticity and pressure.
This fact considerably simplifies deriving boundary integral equations based on the generalized Cauchy integral
formula.

3 Boundary-value Problems and Integral Equations

3.1 Case (a): M 6= 0, Rm 6= 0, and RmR 6= M2

For M 6= 0 and RmR 6= M2, equations (13) with the boundary conditions (10) and (12) reduce to the boundary-
value problem for the four generalized analytic functions G1, G2, and G±3 defined in Theorem 2:

(1−2λ2κ)eλ1 z G1− (1−2λ1κ)eλ2 z G2−
λ1−λ2

RmR−M2 G−3 = λ2−λ1, ζ ∈ `,

eλ1 z G1− eλ2 z G2 = (λ2−λ1)(G+
3 +1), ζ ∈ `.

(38)

Proposition 2 The boundary-value problem (38) has a unique solution.

Proof. The proposition is equivalent to the fact that the homogenous problem (38) has only zero solution,
which with the representations (14)–(18) corresponds to (13) with the zero boundary conditions, i.e. u|S = 0.

Let D+ and D− be the regions bounded by the surface S and exterior to S, respectively. The first equation
in (13) can be recast in the form

curlω +grad℘+R
∂u
∂z
−M2 [k× [k× (u−h−)]] = 0. (39)

With the identities
u · curlω = div(ω×u)+ |ω|2 ,

u ·grad℘= div(℘u)−℘divu = div(℘u) ,
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the scalar product of (39) and u takes the form

div
(

[ω×u]+℘u+
R

2
|u|2 k

)
+ |ω|2 +M2ur

(
ur−h−r

)
= 0. (40)

On the other hand, with the identity

[k×h−] · curlh− = div
(

1
2
|h−|2−h−

(
k ·h−

))
, (41)

the scalar product of the second equation in (13) and [k×h−] results in

h−r
(
h−r −ur

)
− 1

Rm
div
(

1
2
|h−|2−h−

(
k ·h−

))
= 0, (42)

provided that Rm 6= 0. The linear combination (40)+M2(42) reduces to

div
(

[ω×u]+℘u+
R

2
|u|2 k−M2

Rm

(
1
2
|h−|2−h−

(
k ·h−

)))
+ |ω|2 +M2 (ur−h−r

)2 = 0. (43)

Since curlh+ = 0 in D+, we can also write

[k×h+] · curlh+ = div
(

1
2
|h+|2−h+ (k ·h+))= 0. (44)

Let DR be the region bounded by the body’s surface S and by a sphere SR with large radius R and center at
the origin, so that DR→ D− as R→ ∞. Applying the divergence theorem to the linear combination of volume
integrals:

˝
DR

(43)dV −M2/Rm

˝
D+ (44)dV , and using the boundary conditions u = 0 and h+ = h− on S,

we obtain
F = IR +

˚
DR

(
|ω|2 +M2 (ur−h−r

)2
)

dV, (45)

where

IR =
¨

SR

n ·
(

[ω×u]+℘u+
R

2
|u|2 k−M2

Rm

(
1
2
|h−|2−h−

(
k ·h−

)))
dS

with n being the outward normal. Note that (45) holds for multiply connected DR, since u, ω, ℘, and h± are all
single-valued functions.5

Next we show that IR → 0 as R→ ∞. Let CR be the positively oriented cross section of SR in the rz-half
plane, i.e. CR is a semicircle, and let ∂/∂s and ∂/∂n be the tangential and normal derivatives for CR, respectively.
With the identities

∂r
∂s

=
∂z
∂n

,
∂r
∂n

=− ∂z
∂n

, (46)

and the surface element dS = r dsdϕ, where ds is the differential of the length of CR, we have

IR = 2π Re
[ˆ

CR

(
(uz + iur)

(
℘+ iω+

R

2
(uz− iur)

)
+

M2

2Rm
(h−z + ih−r )2

)
r dζ

]
. (47)

Now with the representations (14)–(15) and (17)–(18), the integral (47) reduces to

IR = 2π Re
[ˆ

CR

(
k1 e2λ1 z G2

1 + k2 e2λ2 z G2
2−

(G−3 )2

2Rm(RmR−M2)

)
r dζ

]
,

5If DR is multiply connected, we can make crosscuts in DR to make DR simply connected, and since u, ω, ℘, and h± are single-
valued, they have the same values on the banks of a crosscut.
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where k1 =
(
R/2−2λ2 +2κ λ2

2
)
/(λ1−λ2)2 and k2 =

(
R/2−2λ1 +2κ λ2

1
)
/(λ1−λ2)2. Observe that λ1 6= λ2

since M 6= 0.
The representation (8) implies that in the spherical coordinates (R,ϑ,ϕ) related to the cylindrical coordi-

nates in the ordinary way, Gi(R,ϑ) = fi(ϑ)R−1 e−|λi|R +O
(
R−2 e−|λi|R

)
as R→ ∞ for i = 1,2, where fi(ϑ) is a

bounded complex-valued function with | fi(ϑ)|< K for some constant K and ϑ ∈ [0,π], whereas Example 5 in
[30] implies that G−3 = O(R−2) as R→ ∞. Thus, with ζ = Reiϑ, ϑ ∈ [0,π], we can evaluate

|IR| ≤ 2πK2
ˆ

π

0

(
2

∑
j=1
|k j|e−2R(|λ j|−λ j cosϑ)

)
sinϑdϑ+o(1)

= 2πK2
2

∑
j=1

|k j|
2|λ j|R

(
1− e−4|λ j|R

)
+o(1)→ 0 as R→ ∞,

where λi 6= 0 provided that RmR 6= M2. Consequently, since F ≡ 0, passing R to infinity in (45), we obtain˝
D−
(
|ω|2 +M2(ur−h−r )2

)
dV = 0 so that ω = 0 and ur = h−r in D−, which along with the representations

(14), (15), and (18) imply that ImG j = 0, j = 1,2, in D−. It follows from the system (3) that ReG j = c j e−λ j z,
i = 1,2, where ci are real-valued constants. But since G1 and G2 vanish at infinity, c j = 0, j = 1,2, and thus,
G1 = 0 and G2 = 0 in D−. Then, the first and second equations of the homogeneous problem (38) imply G−3 = 0
and G+

3 = 0 on `, and it follows from the Cauchy integral formula (5) for r-analytic functions that G±3 = 0 in
D±, respectively. �

The next proposition is considered from the mathematical point of view only. It will be used in determining
homogeneous solutions to integral equations that follow from the boundary-value problem (38).

Proposition 3 (homogeneous conjugate boundary-value problem, case (a)) Let G1 and G2 be H-analytic
functions in D+, and let G±3 be r-analytic functions in D±, respectively, with G− vanishing at infinity. Under
the assumptions M 6= 0, Rm 6= 0, and RmR 6= M2, the homogeneous conjugate boundary-value problem

(1−2λ2κ)eλ1 z G1− (1−2λ1κ)eλ2 z G2−
λ1−λ2

RmR−M2 G+
3 = 0, ζ ∈ `,

eλ1 z G1− eλ2 z G2− (λ2−λ1)G−3 = 0, ζ ∈ `,

(48)

has the solution
G1 = c e−λ1 z, G2 = c e−λ2 z, G+

3 = 2Rm c, G−3 = 0, (49)

where c is an arbitrary real-valued constant, and λ1 and λ2 are defined in Theorem 2.

Proof. The formulas (14)–(18), in which G+
3 and G−3 are interchanged and G1, G2, and G±3 are determined

in this proposition, represent u, ℘, ω, and h+ that satisfy (13) in D+ and represent h− that satisfy (11) in
D−. In this case, (13) in D+ and (11) in D− will be called conjugate equations for original (13) and (11).
The homogeneous boundary-value problem (48) corresponds to the conjugate equations with the boundary
conditions u = 0 and h+ = h− on S, where h− vanishes at infinity. For the conjugate equations, the proof of
Proposition 4 can be repeated so that

F = IR +
˚

D+

(
|ω|2 +M2 (ur−h+

r
)2
)

dV = 0, (50)

where

IR =−M2

Rm

¨
SR

n ·
(

1
2
|h−|2−h−

(
k ·h−

))
dS.
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As in the proof of Proposition 4, it can be shown that |IR| → as R→ ∞, and passing R to infinity in (50), we
have ω = 0 and ur = h+

r in D+, and the representations (14)–(18) with interchanged G+
3 and G−3 imply that

ImG1 = 0 and ImG2 = 0 in D+, and it follows from the system (3) that ReG j = c j e−λ j z, i = 1,2, where ci

are real-valued constants. Then the second equation in (48) implies that G−3 = (c1− c2)/(λ2−λ1) on `, and
it follows from the Cauchy integral formula (5) for r-analytic functions that G−3 = (c1− c2)/(λ2−λ1) in D−,
and consequently, G−3 vanishes at infinity only if c1 = c2, whence G−3 = 0 in D−. Finally, the first equation in
(48) implies that G+

3 = 2Rm c on `, where c = c1 = c2, and by the Cauchy integral formula (5) for r-analytic
functions, we obtain G+

3 = 2Rm c in D+. �

The problem (38) can be reduced to integral equations for the boundary values of G1 and G2 based on the
Cauchy integral formula for generalized analytic functions.

Theorem 4 (integral equations, case (a)) Let M 6= 0, Rm 6= 0, and RmR 6= M2. In this case, (38) yields two
integral equations for the boundary values of Fk(ζ) = eλk z Gk(ζ), k = 1,2:

1−2κ λk

2κ(λ1−λ2)
(F1(ζ)−F2(ζ))+

1
2πi

ffi
`∪`′

(
Wr(ζ,τ)− eλk(z−z1) WH(ζ,τ,λk)

)
Fk(τ)dτ =− 1

2κ
, k = 1,2,

(51)
where ζ ∈ ` and λ1 and λ2 are defined in Theorem 2. A solution to (51) is determined up to a real-valued
constant c, i.e. Fk(ζ) = c, k = 1,2, are a homogeneous solution to (51). Let F̂k(ζ), k = 1,2, solve (51), then
G1(ζ) and G2(ζ) on ` are determined by

Gk(ζ) =
(

F̂k(ζ)− c
)

e−λk z, k = 1,2, ζ ∈ `, (52)

where
c =

1
2

F̂k(ζ)+
1

2πi

ffi
`

S
`′

F̂k(τ)eλk(z−z1) WH(ζ,τ,λk)dτ, ζ ∈ `. (53)

Proof. The necessary and sufficient conditions for G1(ζ), G2(ζ), and G±3 (ζ), ζ ∈ `, to be boundary values for
the corresponding generalized analytic functions are given by the generalized Sokhotski-Plemelj formulae (6):

1
2

Gk(ζ)+
1

2πi

ffi
`∪`′

Gk(τ)WH(ζ,τ,λk)dτ = 0, k = 1,2, (54a)

1
2

G±3 (ζ)∓ 1
2πi

ffi
`∪`′

G±3 (τ)Wr(ζ,τ)dτ = 0. (54b)

Expressing G+
3 (ζ) and G−3 (ζ) from (38) in terms of G1(ζ) and G2(ζ), then substituting them into corre-

sponding equations in (54b) and solving the latter for the integral terms, we have

1−2κ λk

2κ(λ1−λ2)
(F1(ζ)−F2(ζ))+

1
2

Fk(ζ)+
1

2πi

ffi
`∪`′

Fk(τ)Wr(ζ,τ)dτ =− 1
2κ

, k = 1,2.

Then (54a) is multiplied by eλkz and is recast in terms of Fk(ζ):

1
2

Fk(ζ)+
1

2πi

ffi
`∪`′

Fk(τ)eλk(z−z1) WH(ζ,τ,λk)dτ = 0, k = 1,2.

Subtracting this equation from the previous one for corresponding k, we obtain (51).
Now we will show that the solution to the boundary-value problem (38) is determined by (52) and (53)

and that a homogenous solution to (51) is Fk(ζ) = c, k = 1,2. It is known that if a boundary-value problem
for ordinary analytic functions is reduced to integral equations, then a homogeneous solution to those integral
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equations is a solution to the homogeneous conjugate boundary-value problem; see [18]. Thus, the approach is
to reduce (51) to the homogeneous conjugate boundary-value problem (48).

Let F̂k(ζ), k = 1,2, solve (51). Then let Θ
+
k (ζ), k = 1,2, be H-analytic functions in D+ determined by the

generalized Cauchy-type integral

Θ
+
k (ζ) =

1
2πi

ffi
`∪`′

F̂k(τ)e−λk z1 WH(ζ,τ,λk)dτ, k = 1,2, ζ ∈D+, (55)

and let Φ±(ζ) be r-analytic functions in D±, respectively, also determined by the generalized Cauchy-type
integrals

Φ
+(ζ) =

1
2πi

ffi
`∪`′

(
(1−2λ1κ)F̂2(τ)− (1−2λ2κ)F̂1(τ)+λ2−λ1

)
Wr(ζ,τ)dτ, ζ ∈D+,

Φ
−(ζ) =

1
2πi

ffi
`∪`′

(
F̂2(τ)− F̂1(τ)

)
Wr(ζ,τ)dτ, ζ ∈D−.

With the introduced functions Θ
+
1 , Θ

+
2 , and Φ± and the corresponding generalized Sokhotski-Plemelj formulas

(6) for these functions, the difference of equations (51) for k = 1 and k = 2 is given by

eλ2 z
Θ

+
2 (ζ)− eλ1 z

Θ
+
1 (ζ) = Φ

−(ζ), ζ ∈ `.

Similarly, the linear combination (1−2λ2κ) · (51)|k=1− (1−2λ1κ) · (51)|k=2 reduces to

(1−2λ1κ)eλ2 z
Θ

+
2 (ζ)− (1−2λ2κ)eλ1 z

Θ
+
1 (ζ) = Φ

+(ζ), ζ ∈ `.

Observe that the last two equations are equivalent to the homogeneous conjugate boundary-value problem (48)
with Θ

+
k = Gk, k = 1,2, Φ+ = − λ1−λ2

RmR−M2 G+
3 , and Φ− = (λ1− λ2)G−3 . Consequently, by Proposition 3, the

only solution these equations have is Θ
+
k = c e−λk z, k = 1,2, Φ+ = 2(λ2−λ1)κ c, and Φ− = 0, where c is a

real-valued constant. In this case, the representation (55) can be rearranged in the form

1
2πi

ffi
`∪`′

(
F̂k(τ)− c

)
e−λk z1 WH(ζ,τ,λk)dτ = 0 k = 1,2, ζ ∈D+.

For ζ approaching ` within D+, the above equation reduces to the generalized Sokhotski-Plemelj formula

1
2

(
F̂k(ζ)− c

)
e−λk z +

1
2πi

ffi
`∪`′

(
F̂k(τ)− c

)
e−λk z1 WH(ζ,τ,λk)dτ = 0 k = 1,2, ζ ∈ `. (56)

which is the necessary and sufficient condition for
(

F̂k(ζ)− c
)

e−λk z, ζ ∈ `, to be the boundary value of an

H-analytic function in D− that vanishes at infinity. Thus, the solution (52)–(53) follows from (56).
Finally, let F̃k(ζ), k = 1,2, ζ ∈ ` be another solution to (51). Similarly, we can show that Gk(ζ) =(

F̃k(ζ)− c̃
)

e−λk z, k = 1,2, ζ ∈ `, solve the boundary-value problem (38), where c̃ is a real-valued constant.

However, by Proposition 2, (38) has a unique solution, and consequently, F̂k(ζ)− F̃k(ζ) = c− c̃, k = 1,2, ζ ∈ `,
which means that a solution to the integral equations (51) is determined up to a real-valued constant, and the
proof is finished. �

Several remarks are in order.

Remark 1 (logarithmic singularity) The kernels in (51) have logarithmic singularity.
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Remark 2 (conic endpoint) If ` is piece-wise smooth (has salient points), in particular has conic endpoints,
the integral equations (51) hold for all ζ ∈ ` except for salient points and conic endpoints, i.e. almost every-
where.

Remark 3 (multi-connected body) The integral equations (51) hold for multiply connected regions, e.g. in
the MHD problem for a torus.

The integral equations (51) can be solved by the quadratic error minimization method. Let ` be parametrized
by ζ = ζ(t) ∈ C1[−1,1], and let Fk = Fk(t), t ∈ [0,1], k = 1,2 be unknown boundary values. For brevity, the
integral equations (51) are represented by

Ak(F1,F2) = fk, t ∈ [−1,1], k = 1,2,

where Ak are corresponding integral operators, and f1(t) = f2(t) = −1/(2κ). The functions Fk(t) can be
approximated by finite functional series

F1(t) = ∑
n
k=1(ak + ibk)Tk−1(t), F2(t) = ∑

n
k=1 ck Tk(t)+ idk Tk−1(t), (57)

where Tk(t) is the Chebyshev polynomial of the first kind and ak, bk, ck, and dk, k = 1, . . . ,n, are real-valued
coefficients. Observe that the real part in the series approximating F2 contains no constant term, whereas the
series for F2 does. This is because same real-valued constant in places of F1 and F2 is a homogeneous solution
to (51).

Unknown coefficients ak, bk, ck, and dk, k = 1, . . . ,n, can be found by minimizing the quadratic error in
satisfying (51), i.e.

min
ak,bk,ck,dk

∑
2
k=1 ‖Ak(F1,F2)− fk‖2 (58)

with the inner product and norm for complex-valued functions f (t) and g(t) introduced by6

〈 f ,g〉= Re
{ˆ 1

−1
f (t)g(t)dt

}
, ‖ f‖=

√
〈 f , f 〉. (59)

Since Ak, k = 1,2, are linear operators, the problem (58) is unconstrained quadratic optimization and reduces
to a system of linear algebraic equations for finding ak, bk, ck, and dk, k = 1, . . . ,n.

3.2 Case (b): M 6= 0 and Rm = 0

Corollary 1 implies that for M 6= 0 and Rm = 0, the boundary conditions (10) reduce to the problem for deter-
mining boundary values of G1 and G2

eλ1 z G1− eλ2 z G2 = λ2−λ1, ζ ∈ `, (60)

where both G1 and G2 vanish at infinity.

Proposition 4 The boundary-value problem (60) has a unique solution.

Proof. The proof is similar to the proof of Proposition 4. In this case, Corollary 1 shows that the disturbance
of the magnetic field in and out the body is zero, i.e. h± = 0. With h− = 0, the functional (45) and the surface
integral (47) reduce to

F = IR +
˚

DR

(
|ω|2 +M2u2

r

)
dV, (61)

6These functions are viewed as two-dimensional vector-functions from the direct sum L2([−1,1])⊕L2([−1,1]).
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and

IR = 2π Re
[ˆ

CR

(
(uz + iur)

(
℘+ iω+

R

2
(uz− iur)

))
r dζ

]
,

respectively. Using the representation (29), we obtain

IR =
2π

λ1−λ2
Re
[ˆ

CR

r
(

e2λ1 z G2
1− e2λ2 z G2

2

)
dζ

]
,

and the rest of the proof is analogous to the proof of Proposition 4. �

Proposition 5 (homogeneous conjugate boundary-value problem, case (b)) Let G1 and G2 be H-analytic
functions in D+. Under the assumption M 6= 0, the homogeneous conjugate boundary-value problem

eλ1 z G1− eλ2 z G2 = 0, ζ ∈ ` (62)

has the solution
G1 = c e−λ1 z, G2 = c e−λ2 z, (63)

where c is an arbitrary real-valued constant, and λ1 and λ2 are defined in Corollary 1.

Proof. The proof is similar to the proof of Proposition 3. �

With the generalized Cauchy integral formula for H-analytic functions, the boundary-value problem (10)
readily reduces to an integral equation.

Theorem 5 (integral equations, case (b)) Let M 6= 0 and Rm = 0, and let F1(ζ) = eλ1z G1(ζ). The boundary-
value problem (60) reduces to the integral equation for the boundary value of F1:

1
2π i

˛
`∪`′

(
eλ2(z−z1) WH(ζ,τ,λ2)− eλ1(z−z1) WH(ζ,τ,λ1)

)
F1(τ)dτ = λ2−λ1, ζ ∈ `. (64)

A solution to (64) is determined up to a real-valued constant c. Let F̂1(ζ) solve (64), then G1(ζ) in (60) is given
by

G1(ζ) =
(

F̂1(ζ)− c
)

e−λ1 z, ζ ∈ `, (65)

where
c =

1
2

F̂1(ζ)+
1

2πi

ffi
`

S
`′

F̂1(τ)eλ1(z−z1) WH(ζ,τ,λ1)dτ, ζ ∈ `. (66)

Proof. The integral equation (64) is derived similarly to (51). In the second part of the proof that determines
a homogeneous solution to (64), H-analytic functions Θ

+
k , k = 1,2, in D+ are introduced by the generalized

Cauchy-type integrals

Θ
+
1 (ζ) =

1
2πi

ffi
`∪`′

F̂1(τ)e−λ1 z1 WH(ζ,τ,λk)dτ, ζ ∈D+,

Θ
+
2 (ζ) =

1
2πi

ffi
`∪`′

(
F̂1(τ)+λ1−λ2

)
e−λ2 z1 WH(ζ,τ,λ2)dτ, ζ ∈D+,

where F̂1 is a solution to (64). With these functions and corresponding generalized Sokhotski-Plemelj formu-
las (6), the integral equation (64) reduces to the homogenous conjugate boundary-value problem (62), whose
solution is given by (63). The rest of the proof is analogous to that of Theorem 4. �

The integral equation (64) can be solved by the quadratic error minimization method outlined in the end of
Section 3.1. Remarks 1–3 also hold for (64).

16



3.3 Case (c): M 6= 0 and RmR = M2

For M 6= 0 and RmR = M2, the boundary conditions (10) reduce to the boundary-value problem for the four
generalized analytic functions G1, G2, and G±3 defined in Theorem 3:

2eλz G1−G2 +(R+Rm)(G+
3 +1) = 0, ζ ∈ `,

Rm

((
z− i

2
r
)

G2 +G−3 +1
)
−RG+

3 = 0, ζ ∈ `,
(67)

where λ = (R+Rm)/2.

Proposition 6 The boundary-value problem (67) has a unique solution.

Proof. The assumptions M 6= 0 and RmR = M2 imply Rm 6= 0, and consequently, as in the proof of Proposition
4, we obtain the functional (45) with the surface integral (47). With the representations (30)–(34), the integral
(47) reduces to

IR = 2π Re
[ˆ

CR

(
(uz + iur)G2 +

R

2(R+Rm)

(
2eλz G1−G2

)2
)

r dζ

]
.

Since in this case, G1 and G2 are H-analytic and r-analytic functions, respectively, we have G1(R,ϑ) =
f (ϑ)R−1 e−|λ|R +O

(
R−2 e−|λ|R

)
as R → ∞, where f (ϑ) is a bounded complex-valued function, and G2 =

O(R−2) as R→ ∞. The rest of the proof is completely analogous to the proof of Proposition 4. �

Proposition 7 (homogeneous conjugate boundary-value problem, case (c)) Let G1 and G2 be H-analytic
and r-analytic functions in D+, respectively, and let G±3 be r-analytic functions in D±, respectively, with
G− vanishing at infinity. Under the assumptions M 6= 0 and RmR = M2, the homogeneous conjugate boundary-
value problem

2eλz G1−G2 +(R+Rm)G−3 = 0, ζ ∈ `,

Rm

((
z− i

2
r
)

G2 +G+
3

)
−RG−3 = 0, ζ ∈ `,

(68)

has the solution
G1 = c e−λz, G2 = 2c, G+

3 =−c(2z− ir), G−3 = 0, (69)

where c is an arbitrary real-valued constant, and λ = (R+Rm)/2.

Proof. The proof is similar to the proof of Proposition 3. �

Theorem 6 (integral equations, case (c)) Let M 6= 0 and RmR =M2, and let λ =(R+Rm)/2, then the boundary-
value problem (67) reduces to two integral equations for F1(ζ) = eλz G1(ζ) and F2(ζ) = G2(ζ), ζ ∈ `:

1
2πi

ffi
`∪`′

(
eλ(z−z1) WH(ζ,τ,λ)−Wr(ζ,τ)

)
F1(τ)dτ+F1(ζ)− 1

2
F2(ζ) = 0,

1
2πi

ffi
`∪`′

(
z1− z+

i

2
(r− r1)

)
F2(τ)Wr(ζ,τ)dτ+

R

Rm(R+Rm)
(2F1(ζ)−F2(ζ)) =−R+Rm

Rm
.

(70)

Equations (70) determine F1 and F2 up to c and 2c, where c is a real-valued constant. Let F̂k, k = 1,2, solve
(70), then the solution to the boundary-value problem (67) is given by

G1(ζ) =
(

F̂1(ζ)− c
)

e−λz, G2(ζ) = F̂2(ζ)−2c, ζ ∈ `, (71)

where
2c =

1
2

F̂2(ζ)+
1

2πi

ffi
`

S
`′

F̂2(τ)Wr(ζ,τ)dτ, ζ ∈ `. (72)
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Proof. The derivation of (70) is similar to that of (51); see the proof of Theorem 4. In the second part of the
proof that determines a homogeneous solution, an H-analytic function Θ+ in D+, r-analytic functions Φ

+
1 and

Φ
+
2 in D+, and an r-analytic function Φ

−
2 in D− are introduced by the generalized Cauchy-type integrals

Θ
+(ζ) =

1
2πi

ffi
`

S
`′

F̂1(τ)e−λz1 WH(ζ,τ,λ)dτ, ζ ∈D+,

Φ
+
1 (ζ) =

1
2πi

ffi
`

S
`′

F̂2(τ)Wr(ζ,τ)dτ, ζ ∈D+,

Φ
+
2 (ζ)=

1
2πi

ffi
`

S
`′

((
z1−

i

2
r1

)
F̂2(τ)+

R

Rm(R+Rm)

(
2F̂1(τ)− F̂2(τ)

)
+

R+Rm

Rm

)
Wr(ζ,τ)dτ, ζ∈D+,

Φ
−
2 (ζ) =

1
2πi

ffi
`

S
`′

(
2F̂1(τ)− F̂2(τ)

)
Wr(ζ,τ)dτ, ζ ∈D−,

where F̂k, k = 1,2, are a solution to (70). With these functions and corresponding generalized Sokhotski-Plemelj
formulas (6), the integral equations (70) reduce to the homogeneous conjugate boundary-value problem (68),
whose solution is given by (69). The rest of the proof continues as in the proof of Theorem 4. �

The integral equation (70) can be solved by the quadratic error minimization method outlined in the end of
Section 3.1. Remarks 1–3 hold for (70) as well.

3.4 Drag

The drag (force) exerted on the body by the electrically conducting fluid in the presence of the magnetic field
has the mechanic and magnetic components

F =
¨

S
Pn dS−µ

˚
D−

[J×H]dV,

where Pn = ρν(2∂u/∂n+[n× curlu])−℘n, with n being the outward normal to S, and J = 1
4π

curlH.
In the axially symmetric case, divu = 0 and the boundary conditions (10) imply

∂u
∂n

=−[n× curlu] on S, (73)

see e.g. the proof of Proposition 8 in [28]. Also, the second term in F vanishes.

Proposition 8 If at infinity, the flow and magnetic field are constant and parallel to the body’s axis of revo-
lution, and if also the fluid and body have the same magnetic permeability, the magnetic force has no direct
contribution to the drag.

Proof. In the axially symmetric case, both the total mechanic and magnetic forces are parallel to the body’s
axis of revolution, and consequently, it is sufficient to show that the projection of the magnetic force onto k
vanishes. Let DR be the region bounded by the body’s surface S and sphere SR with large radius R and center at
the origin. Using the identity (41) and the divergence theorem, we obtain

˚
DR

k · [J×H]dV =−H2
∞

4π

˚
DR

[k×h−] · curlh− dV =−H2
∞

4π
(IR− I),

where

I =
¨

S
n ·
(

(k ·h−)h−− 1
2
|h−|2k

)
dS, IR =

¨
SR

n ·
(

(k ·h−)h−− 1
2
|h−|2k

)
dS.
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As in the proof of Proposition 4, we can show that in all three cases (a), (b), and (c), IR→ 0 as R→ ∞. On the
other hand, since h+ = h− on S and curlh+ = 0 in D+, using the identity similar to (41) for h+, we have

I =
¨

S
n ·
(

(k ·h+)h+− 1
2
|h+|2k

)
dS =−

˚
D+

[k×h+] · curlh+ dV = 0.

Consequently,
˝

DR
k · [J×H]dV → 0 as R→ ∞. �

In view of (73) and Proposition 8, the drag in terms of dimensionalized u and ℘ takes the form

Fz =−V∞ρνa
¨

S
k · ([n× curlu]+℘n)dS, (74)

which, as in the proof of Proposition 11 in [28], reduces to

Fz =−2πV∞ρνa Re
[ˆ

`
r (℘+ iω)dζ

]
. (75)

Let CD = −Fz/(6πV∞ρνa) be a dimensionless drag coefficient, where 6πV∞ρνa is the drag of the sphere
with radius a in the Stokes flow. Theorem 2, Corollary 1, and Theorem 3 and the corresponding boundary-value
problems (38), (60), and (67) imply that

℘+ iω =



1
λ1−λ2

(
(R−2λ2)eλ1 z G1− (R−2λ1)eλ2 z G2

)
+R, ζ ∈ ` case (a),

2
(

eλ1z G1 +λ1

)
, ζ ∈ ` case (b),

1
R+Rm

(
2R eλz G1 +Rm G2

)
+R, ζ ∈ ` case (c).

Now with this representation for ℘+ iω and the fact that Re
[´

` r dζ
]
= 0, (75) leads to the following result.

Proposition 9 (drag) Let M 6= 0, then the drag coefficient CD is determined as follows.

(a) If Rm 6= 0 and RmR 6= M2, then

CD =
1

3(λ1−λ2)
Re
[ˆ

`
r
(
(R−2λ2)eλ1 z G1− (R−2λ1)eλ2 z G2

)
dζ

]
. (76)

where G1 and G2 are defined in Theorem 2.

(b) If Rm = 0, then

CD =
2
3

Re
[ˆ

`
r eλ1 z G1 dζ

]
, (77)

where G1 and λ1 are defined in Corollary 1.

(c) If RmR = M2, then

CD =
1

3(R+Rm)
Re
[ˆ

`
r
(

2R eλz G1 +Rm G2

)
dζ

]
, (78)

where G1 and G2 are defined in Theorem 3.
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4 Axially Symmetric MHD Problems

4.1 Sphere

The purpose of solving the MHD problem for sphere is three-fold: (i) verifying solution representations in
terms of generalized analytic functions by comparing to the existing solutions for sphere; (ii) testing accuracy
of solutions to the integral equations, and (iii) obtaining drag for various R, Rm, and M to compare to the drag
of minimum-drag shapes.

Let Sa be the sphere with radius a and center at the origin, and let (R,ϑ,ϕ) be the spherical coordinates
related to the cylindrical coordinates in the ordinary way.

4.1.1 Case (a): M 6= 0, Rm 6= 0, and RmR 6= M2

In the region exterior to Sa, the functions G1 and G2 in Theorem 2 can be represented by series similar to (8):

Gk(R,ϑ) =
√

a
R

∞

∑
n=1

Ak,n Nn(cosϑ,R,λk), k = 1,2, (79)

where Ak,n are unknown real-valued coefficients and

Nn(t,R,λ) = Ln(t)
Kn+ 1

2
(|λ|R)

Kn+ 1
2
(|λ|a)

− (signλ)L−n(t)
Kn− 1

2
(|λ|R)

Kn+ 1
2
(|λ|a)

,

whereas G±3 can be represented by

G±3 (R,ϑ) = ∑
∞

n=1 B±n (R/a)±n−1 L∓n(cosϑ), (80)

where B±n are unknown real-valued coefficients; see [30, Example 5].
With the orthogonality property

〈Ln(t),Lm(t)〉= 2mδmn (81)

for all integer n and m, where δmn is the Kronecker delta, and the representations (79) and (80), the inner product
of the first equation in (38) with L−m−1(t) for m≥ 0 and the inner product of the second equation in (38) with
Lm(t) for m≥ 1 reduce to a real-valued infinite linear system for A1,n and A2,n:

(1−2λ2κ)∑
∞

n=1 ξmn(λ1)A1,n− (1−2λ1κ)∑
∞

n=1 ξmn(λ2)A2,n = 2(λ1−λ2)δm0, m≥ 0,

∑
∞

n=1 ηmn(λ1)A1,n−∑
∞

n=1 ηmn(λ2)A2,n = 0, m≥ 1,
(82)

where ξmn(λ) =
〈
eλat Nn(t,a,λ),L−m−1(t)

〉
and ηmn(λ) =

〈
eλat Nn(t,a,λ),Lm(t)

〉
. The system (82) can be

truncated at some large m and solved numerically.
With the second equation in (82), the drag coefficinet (76) reduces to

CD =
2
3 ∑

∞

n=1 A1,n η1n(λ1).

Figure 1 shows CD as a function of S for five pairs: R = Rm = 1; R = 1, Rm = 3; R = Rm = 2; R = 3,
Rm = 1; and R = Rm = 3.
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4.1.2 Case (b): M 6= 0 and Rm = 0

As in the previous case, the functions G1 and G2 in Corollary 1 can be represented by the series (79). With the
orthogonality property (81) and representations (79), the inner product of (60) with e−λ2 at Lm(t) for m≥ 1 and
the inner product of (60) with e−λ1 at Lm(t) for m≥ 1, reduce to a real-valued infinite linear system for A1,n and
A2,n:

∑
∞

n=1 ξ̃mn A1,n−2mA2,m = b2,m, m≥ 1,

2mA1,m−∑
∞

n=1 η̃mn A2,n = b1,m, m≥ 1,
(83)

where in this case, ξ̃mn =
〈
eλ1at Nn(t,a,λ1),e−λ2 at Lm(t)

〉
, η̃mn =

〈
eλ2at Nn(t,a,λ2),e−λ1 at Lm(t)

〉
, and bk,m =〈

λ2−λ1,e−λk at Lm(t)
〉
, k = 1,2. Similarly, the system (83) can be truncated at some large m and solved

numerically.
The drag coefficient (77) reduces to

CD =
2
3 ∑

∞

n=1 A1,n

〈
eλ1at Nn(t,a,λ1),L1(t)

〉
.

Figure 2 depicts CD as a function of R for Rm = 0 and M = 0,1,2,3, and as a function of M for Rm = 0
and R = 0,1,2,3. Numerical results show that for R = Rm = 0, the drag is in good agreement with Chester’s
formula [9]: CD = 1+ 3

8M+ 7
960M2− 43

7680M3 +O(M4) for small M up to 0.25; see curve a on Figure 2b.

4.1.3 Case (c): M 6= 0 and RmR = M2 (S = 1)

In this case, the H-analytic function G1 and the r-analytic function G2 in Theorem 3 are represented by the
series

G1(R,ϑ) =
√

a
R

∞

∑
n=1

A1,n Nn(cosϑ,R,λ), G2(R,ϑ) = ∑
∞

n=1 A2,n (R/a)−n−1 Ln(cosϑ), (84)

where Nn(cosϑ,R,λ) is introduced in Section 4.1.1 and λ = (R+Rm)/2, whereas the r-analytic functions G±3
are represented by (80).

With the orthogonality property (81) and representations (84) and (80), the inner products of the first equa-
tion in (67) with Lm(t) for m≥ 1 and with L−m−1(t) for m≥ 0 reduce to a real-valued infinite linear system

∑
∞

n=1 ηmn(λ)A1,n−mA2,m = 0, m≥ 1,

∑
∞

n=1 ξmn(λ)A1,n− (R+Rm)(m+1)B+
m+1 = (R+Rm)δm0, m≥ 0,

(85)

where ηmn(λ) and ξmn(λ) are those in Section 4.1.1.
Similarly, with (84) and (80) and the orthogonality property for the Legendre polynomials, the inner prod-

ucts of the second equation in (67) with Lm(t) for m≥ 1 and with L−m−1(t) for m≥ 0 reduce to

a
(

m−1
2m−1

A2,m−1 +
3(m+1)
2m+1

A2,m+1

)
+2B−m = 0, m≥ 1,

Rm a
(m+1)(m+2)

(2m+1)(2m+3)
A2,m+1−R(m+1)B+

m+1 =−Rm δm0, m≥ 0,

(86)

It follows from the system (85) and the second equation in (86) that

∑
∞

n=1

(
aRm(R+Rm)(m+2)
R(2m+1)(2m+3)

η(m+1)n(λ)−ξmn(λ)
)

A1,n =−(R+Rm)2

R
δm0, m≥ 0.
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The drag coefficient (78) simplifies to the formula

CD =
2
3 ∑

∞

n=1 A1,n η1n(λ),

which is used to evaluate CD at S = 1 in Figure 1 and which for various small R and Rm agrees with Gotoh’s for-
mula [14]: CD ≈ 1+ 3

8R−
( 19

320R2 + 2
15RRm

)
+
( 1

7680

(
213R3 +256R2Rm−704RRm

2)+ 1
30RRm(R+4Rm)

)
.
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(a) curves a, b, c, d correspond to M = 0,1,2,3 (b) curves a, b, c, d correspond to R = 0,1,2,3

Figure 2: Drag for the unit sphere normalized to the sphere’s Stokes drag 6πνρV∞ for Rm = 0 as functions of
R and M.

4.2 Minimum-drag Spheroids

This section solves the axially symmetric MHD problem for solid nonmagnetic spheroids having the volume of
a unit sphere, i.e. 4π/3, and among those finds the spheroids that have the smallest drag for given R, Rm, and
M. In the rz-half plane (r≥ 0), the cross section ` of spheroids is parametrized by r(t) = acos t, z(t) = a−2 sin t,
t ∈ [−π/2,π/2], with a ∈ (0,1]. Then for fixed R, Rm, and M, the spheroid drag becomes a function of a,
and the minimum of this function along with the value of a at which the minimum is attained is found by the
modified bisection method.

Let CD and C∗D be the drag coefficients for the minimum-drag spheroid and unit sphere, respectively, for
same R, Rm, and S, and let κ be the axes ratio of the corresponding minimum-drag spheroid. Figure 3 shows the
drag ratio CD/C∗D and κ as functions of S ∈ [0,2] for the three pairs R = Rm = 1, R = Rm = 2, and R = Rm = 3.
As a function of S, CD/C∗D has maximum at S = 1 (and is nonsmooth at S = 1), which suggests that drag
reduction is smallest for S = 1 and is more significant for S� 1, whereas the shortest minimum-drag spheroids
appear to be not at S = 1. The found minimum-drag spheroids will be used as initial approximations for the
minimum-drag shapes (Section 8).

5 Optimality Condition for Minimum-drag Shape

This section derives necessary optimality conditions for the shape of the body that has the smallest drag and
the volume of a unit sphere in the MHD problem considered in Section 2.

Let body’s surface S divide the space into the interior and exterior regions D+ and D−, respectively. Since
the drag F is parallel to the z axis, minimizing the absolute value of F is equivalent to minimizing −k ·F, and
in view of (74), the shape optimization problem is formulated by

min
S

E , E = k ·
¨

S
([n× curlu]+℘n)dS (87)
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Figure 3: The drag ratio CD/C∗D for the minimum-drag spheroid and corresponding spheroid’s axes ratio as
functions of S for R = Rm = 1 (curve a); R = Rm = 2 (curve b); and R = Rm = 3 (curve c).

subject to (11) and (13) reformulated as
curlcurlu+grad℘+R

∂u
∂z
−M2 [k× [k× (u−h−)]] = 0,

curlh− = Rm [(u−h−)×k],
divu = 0, divh− = 0.

(88)

with the boundary conditions (12) and (10).
To derive necessary optimality conditions for (87)–(88), we use Mironov’s shape variation approach [17].

Let r be the radius vector describing the optimal shape S, and let the shape variation Sε be determined by

rε = r+ ε f (r)n,

where ε is a positive small number, n is the outward normal, and f (r) is any continuous bounded scalar function
such that

˜
S f dS = 0. The condition on f follows from the volume variation: if D+

ε is the region bounded by
the surface Sε, then

˚
D+

ε

dV =
˚

D+
dV +

˚
D+

ε −D+
dV =

˚
D+

dV + ε

¨
S

f dS +o(ε) = 4π/3,

and since
˝

D+ dV = 4π/3, f should satisfy
˜

S f dS = 0.
Let u, ℘, and h± be the velocity disturbance, pressure, and magnetic field disturbances in and out the body

for the optimal shape, and let their variations be given by

uε = u+ εu1 +o(ε), ℘ε =℘+ ε℘1 +o(ε), h±ε = u+ εh±1 +o(ε),

where u1, ℘1, and h±1 satisfy (88).
The boundary condition (10) should hold for uε on Sε:

uε =−k on Sε,

which implies
uε = u(r+ ε f (r)n)+ εu1(r+ ε f (r)n)+o(ε) =−k,
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whence

u(r)+ ε

(
f (r)

∂u(r)
∂n

+u1(r)
)

+o(ε) =−k

and, consequently,

f
∂u
∂n

+u1 = 0 on S,

or, equivalently,

u1 =− f
∂u
∂n

= f [n× curlu] on S. (89)

Similarly, the boundary condition (12) should hold for h±ε on Sε:

h+
ε = h−ε on Sε,

which implies

h+(r+ ε f (r)n)+ εh+
1 (r+ ε f (r)n)+o(ε) = h−(r+ ε f (r)n)+ εh−1 (r+ ε f (r)n)+o(ε),

whence

h+(r)+ ε

(
f (r)

∂h+(r)
∂n

+h+
1 (r)

)
+o(ε) = h−(r)+ ε

(
f (r)

∂h−(r)
∂n

+h−1 (r)
)

+o(ε)

and, consequently,

h+
1 −h−1 =− f

(
∂h+

∂n
− ∂h−

∂n

)
on S. (90)

The variation of the functional E defined in (87) can be determined as follows:

Eε = k ·
¨

Sε

([n× curluε]+℘ε n)dS

= k ·
¨

S
([n× curluε]+℘ε n)dS︸ ︷︷ ︸

=Iε

+k ·
¨

Sε−S
([n× curluε]+℘ε n)dS︸ ︷︷ ︸

=Jε

= Iε + Jε,
(91)

with
Iε = E + ε k ·

¨
S
([n× curlu1]+℘1 n)dS +o(ε), (92)

and
Jε = k ·

˚
Dε

(curlcurlu+grad℘+ ε(curlcurlu1 +grad℘1))sign f dV +o(ε)

= εk ·
¨

S
(curlcurlu+grad℘) f dS +o(ε) =−εR

¨
S

∂uz

∂z
f dS +o(ε).

(93)

where Dε is the region bounded by the surfaces S and Sε, and in obtaining (93), we used the divergence theorem,
the first equation in (88) and the fact that k · [k× [k× (u−h−]] = 0.

A further transformation of the functional Iε relies on the equations adjoint to (88).

Proposition 10 (adjoint equations) Let w∈C2(D−), q∈C1(D−), g± ∈C1(D±), and v± ∈C1(D±) satisfy the
adjoint equations curlcurlw−R

∂w
∂z
−M2 [k× [k×w]]+gradq+Rm [g−×k] = 0, divw = 0,

curlg−+gradv− = Rm [g−×k]−M2 [k× [k×w]],
(94)
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in D− and
curlg+ +gradv+ = 0 in D+ (95)

with the boundary conditions on S and conditions at infinity to be

w|S = k, g+|S = g+|S , v+|S = v−|S ,
w|

∞
= 0, g−|

∞
= 0, v−|

∞
= 0, q|

∞
= 0.

(96)

Then
k ·
¨

S
([n× curlu1]+ p1n)dS =

¨
S

u1 · ([n× curlw]+qn−R(n ·k)k)dS

+
¨

S
n ·
(
[(h+

1 −h−1 )×g−]− (h+
1 −h−1 )v−

)
dS,

(97)

provided that

IR =
¨

SR

n·([curlu1×w]+ [u1× curlw]+ p1w−qu1

+R(w ·u1)k+[h−1 ×g−]−h−1 · v
−)dS→ 0 as R→ ∞,

where SR is the sphere centered at the origin and having large radius R.

Proof. Since u1, ℘1, and h−1 satisfy (88), we can write

0 = w ·
(

curlcurlu1 +R
∂u1

∂z
−M2 [k× [k× (u1−h−1 )]]+grad℘

)
−qdivu1

+g− ·
(
curlh−1 −Rm [(u1−h−1 )×k]

)
− v− divh−1

= div
(
[curlu1×w]+ [u1× curlw]+ p1w−qu1 +R(w ·u1)k+[h−1 ×g−]−h−1 · v

−)
+u1 ·

(
curlcurlw−R

∂w
∂z
−M2 [k× [k×w]]+gradq+Rm [g−×k]

)
− p1 divw

+h−1 ·
(
curlg−+gradv−−Rm [g−×k]+M2 [k× [k×w]]

)
,

which in view of the adjoint equations (94) implies

div
(
[curlu1×w]+ [u1× curlw]+ p1w−qu1 +R(w ·u1)k+[h−1 ×g−]−h−1 · v

−)= 0 in D−. (98)

On the other hand, since h+ satisfies curlh+ = 0 and divh+ = 0, we have

0 = g+ · curlh+
1 − v+ divh+

1 = div
(
[h+

1 ×g+]− v+ h+
1

)
+h+

1 ·
(
curlg+ +gradv+) ,

which with the adjoint equation (95) reduces to

div
(
[h+

1 ×g+]− v+ h+
1

)
= 0 in D+. (99)

Let DR be the region bounded by the surface S and sphere SR. Integrating (98) and (99) over DR and D+,
respectively, and then using the divergence theorem and adding the resulting equations, we obtain

IR−
¨

S
n · ([curlu1×w]+ [u1× curlw]+ p1w−qu1 +R(w ·u1)k

+[h−1 ×g−]−h−1 · v
−− [h+

1 ×g+]+ v+ h+
1

)
dS = 0,

which with the boundary conditions (96) and the assumption that IR → 0 as R→ ∞ can be rearranged in the
form (97). �
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With the relationship (97) and the boundary conditions (89)–(90), the functional (92) takes the form

Iε = E + ε

¨
S

(
[n× curlu] · [n× curlw]+R(n ·k)

∂uz

∂n

)
f dS

− ε

¨
S
n ·
([(

∂h+

∂n
− ∂h−

∂n

)
×g−

]
−
(

∂h+

∂n
− ∂h−

∂n

)
v−
)

f dS +o(ε).
(100)

Now since ∂u/∂s = 0 on S, we observe that

(n ·k)
∂uz

∂n
=

∂z
∂n

∂uz

∂n
=

∂z
∂n

(
∂uz

∂r
∂r
∂n

+
∂uz

∂z
∂z
∂n

)
=

∂r
∂n

(
∂uz

∂r
∂z
∂n
− ∂uz

∂z
∂r
∂n

)
+

∂uz

∂z

=
∂r
∂n

∂uz

∂s
+

∂uz

∂z
=

∂uz

∂z
on S.

(101)

Let ĥ = h+−h− on S. Then (12) and the conditions divh± = 0 in D±∪S imply that ĥ = 0 and div ĥ = 0
on S. In this case, ∂ĥ/∂n = −[n× curl ĥ] on S; see the proof of Proposition 11 in [28]. On the other hand, it
follows from (11), the second equation in (13), and (10) that curl ĥ = Rm [h−×k] on S. Thus,

∂h+

∂n
− ∂h−

∂n
=−Rm [n× [h−×k]] on S. (102)

Also, in the axially symmetric case, curlu = ω(r,z)eϕ, curlw = ω∗(r,z)eϕ, and g− = g−(r,z)eϕ.
Finally, in view of (93) and (100) with (101)–(102), (91) reduces to

Eε = E + ε

¨
S

(
ωω

∗+Rm h−r g−
)

f dS +o(ε).

The necessary optimality condition requires lim
ε→0

(Eε−E)/ε = 0, which yields
˜

S (ωω∗+Rm h−r g−) f dS.

However, since f should satisfy
˜

S f dS = 0, we conclude that ωω∗+Rm h−r g− is constant on S.
Consequently, the following result has been proved.

Theorem 7 Under the assumptions of Proposition 10, the necessary optimality condition for the minimum-
drag shape subject to the volume constraint is given by

ωω
∗+Rm h−r g− = const on S, (103)

where ω = eϕ · curlu, ω∗ = eϕ · curlw and g− = eϕ · g−, and w and g− are solutions of the adjoint equations
(94)–(95) with the boundary conditions (96).

6 Solving Adjoint MHD Equations

A solution to the adjoint equations (94)–(95) with the boundary conditions (96) can be also constructed in terms
of generalized analytic functions. In the axially symmetric case with the axis of revolution coinciding with the
z axis, the functions w, q, g±, and v± have the following representations:

w = wr(r,z)er +wz(r,z)k, q = q(r,z), g± = g±(r,z)eϕ, v± = v±(r,z),

where the third formula implies divg± = 0.
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6.1 Case (a): M 6= 0 and RmR 6= M2

Let ` be the positively oriented cross section of S in the right-half rz-plane, and let `′ be the reflection of ` over
the z axis.

Theorem 8 (solution representation for the adjoint equations, case (a)) Let λ1 and λ2 be as those defined
in Theorem 2. In the axially symmetric case with M 6= 0 and RmR 6= M2, a solution to the adjoint equations
(94)–(95) is given by

wz + iwr =
1

λ1−λ2

(
(2λ2κ−1)e−λ1 z G1− (2λ1κ−1)e−λ2 z G2

)
+κ G−3 ,

v−+ ig− = (1−Rκ)
(

2
λ1−λ2

(
λ2 e−λ1 z G1−λ1 e−λ2 z G2

)
+G−3

)
,

v+ + ig+ = G+
3 ,

q =
2(Rκ−1)

λ1−λ2

(
λ2 e−λ1 z Re[G1]−λ1 e−λ2 z Re[G2]

)
+Rκ Re[G−3 ],

ω
∗ =

1
λ1−λ2

(
(R−2λ2)e−λ1 z Im[G1]− (R−2λ1)e−λ2 z Im[G2]

)
.

(104)

where G1 and G2 are H-analytic functions in D− that satisfy (3) with λ = −λ1,2, respectively, and vanish at
infinity; G±3 are r-analytic functions in D±, respectively, with G−3 vanishing at infinity.

Proof. The proof is similar to that of Theorem 2. �

With the representations (104), the boundary conditions (96) reduce to the boundary-value problem for the
generalized analytic functions G1, G2, and G±3 defined in Theorem 8:

(1−2λ2κ)e−λ1 z G1− (1−2λ1κ)e−λ2 z G2− (λ1−λ2)κ G−3 = λ2−λ1, ζ ∈ `,

e−λ1 z G1− e−λ2 z G2 = (λ2−λ1)
(

Rm

M2 G+
3 +1

)
, ζ ∈ `.

(105)

The problem (105) can be reduced to integral equations for the boundary values of G1 and G2 based on the
generalized Cauchy integral formula.

Theorem 9 (adjoint integral equations, case (a)) Let M 6= 0, Rm 6= 0, and RmR 6= M2. In this case, (105)
yields two integral equations for the boundary values of Fk(ζ) = e−λk z Gk(ζ), k = 1,2:

1−2κ λk

2κ(λ1−λ2)
(F1(ζ)−F2(ζ))+

1
2πi

ffi
`∪`′

(
Wr(ζ,τ)− eλk(z1−z) WH(ζ,τ,−λk)

)
Fk(τ)dτ =− 1

2κ
, k = 1,2,

(106)
where ζ ∈ ` and λ1 and λ2 are defined in Theorem 2. A solution to (106) is determined up to a real-valued
constant c, i.e. Fk(ζ) = c, k = 1,2, are a homogeneous solution to (106). Let F̂k(ζ), k = 1,2, solve (106), then
Gk(ζ), k = 1,2, are determined by

Gk(ζ) =
(

F̂k(ζ)− c
)

eλk z, k = 1,2, ζ ∈ `, (107)

where
c =

1
2

F̂k(ζ)+
1

2πi

ffi
`

S
`′

F̂k(τ)eλk(z1−z) WH(ζ,τ,−λk)dτ, ζ ∈ `. (108)
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Proof. The proof is completely analogous to the proof of Theorem 4. �

In fact, the integral equations (51) and (106) are very similar. The only difference is in the sign of λk in the
kernels. The next proposition shows that solutions of (51) and (106) are closely related.

Proposition 11 Let ` be the reflection of the curve ` over the r axis, and let Fk(ζ), k = 1,2, be a solution to

the integral equations (51) for ζ ∈ `, then F̃k(ζ) = Fk(ζ), k = 1,2, ζ ∈ `, is a solution to the integral equations
(106).

Proof. With the change of variables τ = τ∗, τ∗ ∈ `, and ζ = ζ∗, ζ∗ ∈ `, in (106) and with the properties
Wr(ζ,τ) = Wr(ζ,τ) and WH(ζ,τ,−λ) = WH(ζ,τ,λ), the integral equations (106) reduce to (51) for unknown
functions F̃k(ζ∗) = Fk(ζ∗), k = 1,2, ζ∗ ∈ `. �

6.2 Case (b): M 6= 0 and Rm = 0

We recall that for Rm = 0, the magnetic field is uncoupled from the velocity field but is involved in determining
the velocity field, and Corollary 1 shows that the magnetic field is zero in this case. For the adjoint equations
(94)–(95), when Rm = 0, w and q are uncoupled from g± and v±, and their representation follows directly from
(104).

Corollary 4 (solution representation for the adjoint equations, case (b)) Let λ1 and λ2 be as those defined
in Corollary 1. In the axially symmetric case with M 6= 0 and Rm = 0, a solution to the adjoint equations
(94)–(95) is given by

wz + iwr =− 1
λ1−λ2

(
e−λ1 z G1− e−λ2 z G2

)
,

q+ iω∗ = e−λ1 z
(

G1−
R

2(λ1−λ2)
G1

)
+ e−λ2 z

(
G2 +

R

2(λ1−λ2)
G2

)
,

v−+ ig− =
2

λ1−λ2

(
λ2 e−λ1 z G1−λ1 e−λ2 z G2

)
+G−3 ,

v+ + ig+ = G+
3 ,

(109)

where G1, G2, and G±3 are defined in Theorem 8.

In this case, both equations in (105) reduce to the same boundary-value problem

e−λ1 z G1− e−λ2 z G2 = λ2−λ1, ζ ∈ `. (110)

Once G1 and G2 are found from (110), the boundary values of G±3 can be found based on the last two formulas
in (109) and the fact that v+ + ig+ = v−+ ig− on `. Namely, G+

3 −G−3 = 2
λ2−λ1

(
λ2 e−λ1 z G1−λ1 e−λ2 z G2

)
on

`, and G±3 are determined by the Cauchy integral formula (5) for r-analytic functions.

Theorem 10 (adjoint integral equations, case (b)) Let M 6= 0 and Rm = 0, and let F1(ζ) = e−λ1z G1(ζ), where
λ1 is defined in Corollary 1, then (110) reduces to the integral equation for the boundary value of F1:

1
2π i

˛
`∪`′

(
eλ2(z1−z) WH(ζ,τ,−λ2)− eλ1(z1−z) WH(ζ,τ,−λ1)

)
F1(τ)dτ = λ2−λ1, ζ ∈ `. (111)

A solution to (64) is determined up to a real-valued constant c. Let F̂1(ζ) solve (111), then G1(ζ) in (110) is
given by

G1(ζ) =
(

F̂1(ζ)− c
)

eλ1 z, ζ ∈ `, (112)
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where
c =

1
2

F̂1(ζ)+
1

2πi

ffi
`

S
`′

F̂1(τ)eλ1(z1−z) WH(ζ,τ,−λ1)dτ, ζ ∈ `. (113)

Proof. The proof is analogous to the proof of Theorem 5. �

Proposition 12 Let ` be the reflection of the curve ` over the r axis, and let F1(ζ) be a solution to the integral

equation (64) for ζ ∈ `, then F̃1(ζ) = F1(ζ), ζ ∈ `, is a solution to the integral equation (111).

Proof. The proof is similar to that of Proposition 11. �

6.3 Case (c): M 6= 0 and RmR = M2

Theorem 11 (solution representation for the adjoint equations, case (c)) Let λ = (R + Rm)/2. In the axi-
ally symmetric case with M 6= 0 and RmR = M2, a solution to the adjoint equations (94)–(95) is given by

wz + iwr =
1

R+Rm

(
− 2R

R+Rm
e−λz G1 +

(
Rm

(
z− i

2
r
)

+
R

R+Rm

)
G2 +Rm G−3

)
,

v−+ ig− =− Rm R

R+Rm

(
2

R+Rm
e−λz G1 +

(
z− i

2
r− 1

R+Rm

)
G2 +G−3

)
,

v+ + ig+ = G+
3 ,

q =
RmR

R+Rm

(
2

R+Rm
e−λz Re[G1]+Re

[(
z− i

2
r− 1

R+Rm

)
G2

]
+Re[G−3 ]

)
+Re[G2],

ω
∗ =

1
R+Rm

(
2Re−λz Im[G1]+Rm Im[G2]

)
,

(114)

where G1 is an H-analytic function in D− satisfying (3) with λ and vanishing at infinity; G2 and G−3 are
r-analytic functions in D− and vanishing at infinity; and G+

3 is an r-analytic function in D+.

Proof. The proof is similar to the proof of Theorem 3. �

In this case, the boundary conditions (96) reduce to the boundary-value problem

2e−λz G1−G2 +(R+Rm)
(

1
R

G+
3 +1

)
= 0, ζ ∈ `,

Rm

((
z− i

2
r
)

G2 +G−3 −1
)

+G+
3 = 0, ζ ∈ `.

(115)

Theorem 12 (adjoint integral equations, case (c)) Let M 6= 0 and RmR = M2, and let λ = (R+Rm)/2, then
the boundary-value problem (115) reduces to two integral equations for F1(ζ) = e−λz G1(ζ) and F2(ζ) = G2(ζ):

1
2πi

ffi
`∪`′

(
eλ(z1−z) WH(ζ,τ,−λ)−Wr(ζ,τ)

)
F1(τ)dτ+F1(ζ)− 1

2
F2(ζ) = 0,

1
2πi

ffi
`∪`′

(
z1− z+

i

2
(r− r1)

)
F2(τ)Wr(ζ,τ)dτ− R

Rm(R+Rm)
(2F1(ζ)−F2(ζ)) =

R+Rm

Rm
,

(116)

where ζ ∈ `. Equations (116) determine F1 and F2 up to c and 2c, where c is a real-valued constant. Let F̂1 and
F̂2 solve (116), then the solution to the boundary-value problem (115) is given by

G1(ζ) =
(

F̂1(ζ)− c
)

eλz, G2(ζ) = F̂2(ζ)−2c, ζ ∈ `, (117)
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where
2c =

1
2

F̂2(ζ)+
1

2πi

ffi
`

S
`′

F̂2(τ)Wr(ζ,τ)dτ, ζ ∈ `. (118)

Proof. The proof is similar to that of Theorem 6. �

Proposition 13 Let ` be the reflection of the curve ` over the r axis, and let Fk(ζ), k = 1,2, be a solution to the

integral equations (70) for ζ ∈ `, then F̃k(ζ) = Fk(ζ), k = 1,2, ζ ∈ `, are a solution to the integral equations
(116).

Proof. The proof is similar to that of Proposition 11. �

7 Asymptotic Behavior at Conic Endpoint

It is known that for a nonconducting viscous incompressible fluid under the Stokes and Oseen approximations,
the minimum-drag shapes subject to a volume constraint have conic endpoints with the angle between the axis
of revolution and the tangent at the endpoint to be 2π/3; see [20, 17]. This section analyzes the asymptotic
behavior of a solution to the MHD problem (10)–(13) near the vicinity of a conic endpoint.

Let one of the endpoints of ` lie on the z axis and have coordinates r = 0, z = c, and let (ρ,θ) be the local
polar coordinates with the pole at r = 0, z = c and with the angle θ counted from the z axis. In this case, (ρ,θ)
are related to (r,z) by r = ρsinθ and z = c + ρcosθ, θ ∈ [0,π]. Let θ0 be the angle between the z axis and the
tangent to ` at the endpoint. It is assumed that ` is in the cone θ≥ θ0.

7.1 Cases (a) and (b): M 6= 0 and Rm R 6= M2

Proposition 14 (asymptotic behavior of G1 and G2) Let M 6= 0 and Rm R 6= M2, and let G1 and G2 be H-
analytic functions defined in Theorem 2. The asymptotic behavior of G1 and G2 on ` in the vicinity of the
endpoint is given by

Gk =


bk +o

(
ρ0
)
, θ0 < 2π/3,

ak (lnρ+2ln(cos(θ0/2))− i tan(θ0/2))+bk +o
(
ρ0
)
, θ0 = 2π/3,

ak ρα−1Mα−1(cosθ0)+bk +o
(
ρ0
)
, θ0 > 2π/3,

(119)

as ρ→ 0, where ak,bk ∈R are some constants, Mα(cosθ) = (α+1)Pα(cosθ)+ iP(1)
α (cosθ), and α is the single

zero of the equation(
1+ cos2

θ0
)

Pα(cosθ0)P(1)
α (cosθ0)+ sinθ0 cosθ0

([
P(1)

α (cosθ0)
]2

+α(α+1) [Pα(cosθ0)]
2
)

= 0 (120)

in the interval (0,1) for given θ0.7

Proof. The proof is conducted similarly to the proof of Proposition 1 in [32]. First, let Rm 6= 0.
In the local polar coordinates (ρ,θ), the H-analytic functions G1 and G2 and r-analytic functions G±3 can

be represented in the form

Gk = akρ
α−1Mα−1(cosθ)+bk +ρ

α (ck Mα(cosθ)−λk akPα(cosθ))+o(ρα), 0 < α < 1,

G±3 = a±3 ρ
α−1Mα−1(cosθ)+b±3 + c±3 ρ

α Mα(cosθ)+o(ρα), 0 < α < 1,
(121)

7Equation (120) reduces to identity for α = 0 and α = 1.
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as ρ→ 0, where k = 1,2, and a1, b1, c1, a2, b2, c2, a±3 , b±3 , c±3 are real constants. Substituting (121) into the
boundary-value problem (38) with eλk z = eλk c(1+λkρ cosθ+O(ρ2)) and equating corresponding coefficients
at ρα−1, ρ0, and ρα, we obtain six equations:

(1−2λ2κ)a1 eλ1c−(1−2λ1κ)a2 eλ2c− λ1−λ2

Rm R−M2 a−3 = 0,

(1−2λ2κ)b1 eλ1c−(1−2λ1κ)b2 eλ2c− λ1−λ2

Rm R−M2 b−3 = λ2−λ1,

eλ1 c a1− eλ2 c a2 = (λ2−λ1)a+
3 ,

eλ1 c b1− eλ2 c b2 = (λ2−λ1)(b+
3 +1),(

(1−2λ2κ)c1 eλ1c−(1−2λ1κ)c2 eλ2c− λ1−λ2

Rm R−M2 c−3

)
Mα(t)

+
(
(1−2λ2κ)λ1 a1 eλ1c−(1−2λ1κ)λ2 a2 eλ2c

)
(t Mα−1(t)−Pα(t)) = 0,

(122)

(
eλ1 c c1− eλ2 c c2− (λ2−λ1)c+

3

)
Mα(t)+

(
eλ1 c

λ1 a1− eλ2 c
λ2 a2

)
(t Mα−1(t)−Pα(t)) = 0, (123)

where t = cosθ0. In fact, (122) and (123) are complex-valued equations and equivalent to a system of four
equations which can have nonzero a1 and a2 only if system’s determinant is zero, i.e.,

Re[Mα(t)] Im [t Mα−1(t)−Pα(t)]− Im[Mα(t)]Re [t Mα−1(t)−Pα(t)] = 0. (124)

With the relationships Pα−1(t) = t Pα(t)−α−1
√

1− t2 P(1)
α (t) and P(1)

α−1(t) = t P(1)
α (t) + α

√
1− t2 Pα(t), the

condition (124) reduces to (120), which has a zero α in (0,1) only for θ0 > 2π/3. The zero is single on (0,1),
and α→ 1− as θ0→ 2π/3+.

Now when α→ 1, ρα−1Mα−1(cosθ) becomes equivalent to ρ0 in (121). In this case, G1, G2, and G±3 are
represented by

Gk = (Ak(θ)+Bk(θ)ρ) lnρ+Ck(θ)+Dk(θ)ρ+o(ρ), k = 1,2,

G±3 =
(
A±3 (θ)+B±3 (θ)ρ

)
lnρ+C±3 (θ)+D±3 (θ)ρ+o(ρ),

(125)

with complex-valued functions A1, B1, C1, A2, B2, C2, A±3 , B±3 , C±3 given by

Ak(θ) = ak, Bk(θ) = bk M1(cosθ)−akλk cosθ, Ck(θ) = ck +ak ψ
−
1 (θ), k = 1,2,

Dk(θ) = dk M1(cosθ)−bk ψ
−
2 (θ)+λk

(
ak
(
1−2cosθ ln

(
cos θ

2

))
− ck cosθ

)
, k = 1,2,

A±3 (θ) = a±3 , B±3 (θ) = b±3 M1(cosθ), C±3 (θ) = c±3 +a±3 ψ
±
1 (θ), D±3 (θ) = d±3 M1(cosθ)−b±3 ψ

±
2 (θ)

where

ψ
−
1 (θ) = 2ln(cos(θ/2))− i tan(θ/2), ψ

−
2 (θ) =−ψ

−
1 (θ)M1(cosθ)+1− icosθ tan(θ/2)

ψ
+
1 (θ) = 2ln(sin(θ/2))+ i cot(θ/2), ψ

+
2 (θ) =−ψ

+
1 (θ)M1(cosθ)−1+ icosθ cot(θ/2),

and a1, b1, c1, a2, b2, c2, a±3 , b±3 , c±3 are real constants. Observe that A1, B1, C1, A2, B2, C2, A−3 , B−3 , C−3 are
finite for θ ∈ [0,π), whereas A+

3 , B+
3 , C+

3 are finite for θ ∈ (0,π].
For brevity, let ak = (ak,bk,ck), k = 1,2, and a±3 = (a±3 ,b±3 ,c±3 ). Substituting (125) into (38) with eλk z =

eλk c(1 + λkρcosθ + O(ρ2)) and equating corresponding coefficients at lnρ, ρ lnρ, ρ0, and ρ, we obtain after
some transformations: a+

3 = 0, b+
3 = 0, and

(1−2λ2κ)eλ1c a1− (1−2λ1κ)eλ2c a2−
λ1−λ2

Rm R−M2 a−3 = (0,0,λ1−λ2),

eλ1 c a1− eλ2 c a2− (λ2−λ1)a+
3 = (0,0,λ2−λ1),
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(
(1−2λ2κ)d1 eλ1c−(1−2λ1κ)d2 eλ2c− λ1−λ2

Rm R−M2 d−3

)
M1(cosθ0)

+
(
(1−2λ2κ)λ1 a1 eλ1c−(1−2λ1κ)λ2 a2 eλ2c

)
(1− i cosθ0 tan(θ0/2)) = 0,

(126)

(
d1 eλ1c−d2 eλ2c−(λ2−λ1)d+

3

)
M1(cosθ0)+

(
λ1 a1 eλ1c−λ2 a2 eλ2c

)
(1− i cosθ0 tan(θ0/2)) = 0. (127)

As in the previous case, (126)–(127) is a system of four scalar equations which can have nonzero a1 and a2
only if system’s determinant is zero:

Re[M1(cosθ0)] Im[1− i cosθ0 tan(θ0/2)]− Im[M1(cosθ0)]Re[1− i cosθ0 tan(θ0/2)] = 0, (128)

which reduces to 2cos2 θ0− cosθ0−1 = 0. This condition implies θ0 = 0 and θ0 = 2π/3, which proves (119)
for θ0 = 2π/3. For Rm = 0, the proof is completely analogous. �

7.2 Case (c): M 6= 0 and Rm R = M2

Proposition 15 (asymptotic behavior of G1 and G2) Let M 6= 0 and Rm R = M2, and let G1 and G2 be those
defined in Theorem 3. The asymptotic behavior of G1 and G2 on ` in the vicinity of the endpoint is given by
(119)–(120).

Proof. The proof is similar to that of Proposition 14. Though there are some differences. In the vicinity of
the conic endpoint, let G1 and G±3 be represented by (121) with λ1 = (R + Rm)/2. However, G2 here is an
r-analytic function and is represented by

G2 = a2ρ
α−1Mα−1(cosθ)+b2 + c2ρ

αMα(cosθ)+o(ρα), 0 < α < 1.

Substituting these representations into (67) and equating corresponding coefficients at ρα, ρ0, and ρα, we have

2a1 eλ1c−a2 +(R+Rm)a+
3 = 0,

2b1 eλ1c−b2 +(R+Rm)(b+
3 +1) = 0,

Rm

(
ca2 +a−3

)
−Ra+

3 = 0,

Rm

(
cb2 +b−3 +1

)
−Rb+

3 = 0,(
2c1 eλ1c−c2 +(R+Rm)c+

3

)
Mα(t)+2λ1 a1 eλ1c (t Mα−1(t)−Pα(t)) = 0,(

Rm

(
cc2 + c−3

)
−Rc+

3

)
Mα(t)+

1
2
Rm a2 M1(t)Mα−1(t) = 0,

(129)

where t = cosθ0. The complex-valued equations (129) have nonzero a1 and a2 if the determinant of each
equation is zero. The determinant of the first equation in (129) is given by (124), whereas the determinant of
the second takes the form

Re[Mα(t)] Im [M1(t)Mα−1(t)]− Im[Mα(t)]Re [M1(t)Mα−1(t)] = 0.

Remarkably, as (124), this condition also reduces to (120), which proves (119) for 0 < α < 1.
When α→ 1, the functions G1, G2, and G±3 are represented by (125) with λ1 = (R + Rm)/2 and with

complex-valued functions A1, B1, C1, A±3 , B±3 , C±3 as defined in the proof of Proposition 14, and

A2(θ) = a2, B2(θ) = b2 M1(cosθ), C2(θ) = c2 +a2 ψ
−
1 (θ), D2(θ) = d2 M1(cosθ)−b2 ψ

−
2 (θ).

Substituting these representations into (67) and equating corresponding coefficients at lnρ, ρ lnρ, ρ0, and ρ, we
obtain after some transformations: a+

3 = 0, b+
3 = 0, 2eλ1c a1− a2 = 0, 2eλ1c b1− b2 = 0, 2eλ1c c1− c2 +(R+

Rm)(c+
3 +1) = 0, ca2 +a−3 = 0, a2/2+ cb2 +b−3 = 0, Rm

(
cc2 + c−3 +1

)
−Rc+

3 = 0, and(
2eλ1c d1−d2

)
M1(cosθ0)+2λ1 a1 eλ1c (1− i cosθ0 tan(θ0/2)) = 0,(

Rm(c2/2+ cd2 +d−3 )−Rd+
3

)
M1(cosθ0)+

1
2

a2 (1− i cosθ0 tan(θ0/2)) = 0.
(130)
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The complex-valued equations (130) have nonzero a1 and a2 if (128) holds, and the rest of the proof is similar
to that of Proposition 14. �

7.3 Adjoint Equations

The asymptotic behavior of solutions to the adjoint equations (94)–(96) near the conic endpoint on the boundary
is analyzed similarly.

Proposition 16 (asymptotic behavior of G1 and G2 for the adjoint equations) Let M 6= 0, and let G1 and G2
be defined as in either Theorem 8 or Theorem 11. In both cases, the asymptotic behavior of G1 and G2 on ` in
the vicinity of the endpoint is given by (119)–(120).

Proof. The proof is completely analogous to the proofs of Propositions 14 and 15. �

8 Analysis of Minimum-drag Shape

The results obtained in Sections 5–7 have the following implications.
With the representations (104), (109), and (114), we can prove that in Proposition 10, IR→ 0 as R→∞. The

proof is similar to showing that IR→ 0 as R→∞ in the proof of Proposition 2, and consequently, the assumption
of Proposition 10 holds true. With the representations for solutions of the adjoint equations obtained in Section
6, the optimality condition (103) is specialized for each case (a), (b), and (c).

Corollary 5 (optimality condition)

(a) In case (a) (i.e. M 6= 0, Rm R 6= M2, Rm 6= 0), let G1 and G2 be those defined in Theorem 2, and let G∗1 and
G∗2 be those introduced in Theorem 8. The representations (18) and (104) with the boundary conditions
(38) and (105) and with the identity (R−2λ1)(R−2λ2)+M2 = 0 imply that on `, the optimality condition
(103) simplifies to

ωω
∗+Rm h−r g− =

2
λ1−λ2

((R−2λ2) Im[G1] Im[G∗1]− (R−2λ1) Im[G2] Im[G∗2]) = const. (131)

(b) In case (b) (i.e. M 6= 0, Rm = 0), let G1 and G2 be those defined in Corollary 1, and let G∗1 and G∗2 be
those introduced in Corollary 4. The representations (29) and (109) with the boundary conditions (60)
and (110) imply that on `, the optimality condition (103) reduces to

ωω
∗+Rm h−r g− = 4Im[G1] Im[G∗1] = const. (132)

Observe that in this case, Im[G1] = Im[G2] and Im[G∗1] = Im[G∗2] on `, and under these conditions, (132)
follows from (131).

(c) In case (c) (i.e. M 6= 0, Rm R = M2), let G1 and G2 be those defined in Theorem 3, and let G∗1 and G∗2 be
those introduced in Theorem 11. The representations (34) and (114) with the boundary conditions (67)
and (115) imply that on `, the optimality condition (103) simplifies to

ωω
∗+Rm h−r g− =

1
R+Rm

(4R Im[G1] Im[G∗1]+Rm Im[G2] Im[G∗2]) = const. (133)

Corollary 6 If Rm = 0 and R = 0, the adjoint equations (94) for w and q coincide with (13) for u and℘. In this
case, the boundary conditions (10) and (96) imply w = −u and ω∗ = −ω, and thus, the optimality condition
(103) simplifies to ω = const on S, or eMz/2 Im[G1] = const on `, where G1 is defined in Corollary 2.
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Corollary 7 Propositions 11–13 imply that if ` is fore-and-aft symmetric, i.e. symmetric with respect to the
r axis, and ` admits a parametrization ζ = ζ(t), t ∈ [−1,1], such that ζ(t) = ζ(−t), then if Fk(t), t ∈ [−1,1],
k = 1,2, are a solution to (51), or (64), or (70), then Fk(−t), t ∈ [−1,1], k = 1,2, are a solution to (106) or
(111) or (116), respectively.

Now if an optimal shape is to be found iteratively and the iteration process starts from a fore-and-aft
symmetric shape, e.g. sphere or spheroid, then at each iteration, the optimality conditions (131)–(133) are
symmetric with respect to the r axis, which means that the optimal shape will be fore-and-aft symmetric. In this
case, (131)–(133) take the form υ(t) = const for t ∈ [−1,1], where

υ(t) =


− 2

λ1−λ2
((R−2λ2)V1(t)V1(−t)− (R−2λ1)V2(t)V2(−t)) in case (a),

−4V1(t)V1(−t) in case (b),

− 1
R+Rm

(4RV1(t)V1(−t)+RmV2(t)V2(−t)) in case (c),

(134)

and Vk(t) = Im[Fk(t)], k = 1,2.

Propositions 14 and 15 do not specify whether a1 and a2 for G1 and G2 in (119) are related. Since the
kernels in the integral equations (51) and (70) have logarithmic singularities, the integrals in (51) and (70) with
G1 and G2 behaving as (119) in the vicinity of a conic endpoint are integrable and finite. This implies that
F1(ζ)−F2(ζ) in (51) and 2F1(ζ)−G2(ζ) in (70) are finite, and consequently, in (119), a1 = a2 for cases (a) and
(b), and 2a1 = a2 for case (c). The same is true for G∗1 and G∗2.

Corollary 8 (conic endpoints) In the setting of Corollary 7, suppose t = ±1 correspond to conic endpoints.
Then in the vicinity of t =±1, υ(t) behaves as −4V1(t)V1(−t) in all three cases (a)–(c) with V1 being defined
respectively. Then (119) implies that −4V1(t)V1(−t) = const 6= 0 in the vicinity of ±1 only if θ0 = 2π/3.

Now we proceed with finding the minimum-drag shape in semi-analytical form. Let ζ be parametrized by

ζ(t) = r(t)+ iz(t) = γ

(
cos(πt/2)∑

n1

j=0 a j T2 j(t)+ i sin(πt/2)∑
n2

j=0 b j T2 j(t)
)

, t ∈ [−1,1], (135)

where Tj(t) is the Chebyshev polynomial of the first kind; a0, . . . ,an1 , b0, . . . ,bn2 are real coefficients; and
γ = γ(a0, . . . ,an1 ,b0, . . . ,bn2) is the multiplier introduced to satisfy the volume constraint π

´ 1
−1 r2z′dt = 4π/3

identically, i.e. if ζ(t) = γ(r̂(t)+ i ẑ(t)), then

γ =
(

3
4

ˆ 1

−1
r̂2ẑ′dt

)−1/3

. (136)

The choice of the parametrization (135)–(136) is explained in [33].
Let υ̃(t) = υ(t)− 1

2

´ 1
−1 υ(t)dt, where the second term in the right-hand side is the average of υ(t) on

t ∈ [−1,1], and let ζk = rk + izk and υ̃k be the shape ζ and function υ̃, respectively, at step k. Then ζk can be
updated as in Pironneau’s iterative procedure [20]:

ζk+1 = ζk + εk υ̃k
∂ζk

∂n
. (137)

This procedure reduces to finding optimal a0, . . . ,an1 , b0, . . . ,bn2 in (135) as described by Algorithm 1 in
[33], in which u∗n needs to be replaced by υ̃, and initial a0 and b0 should correspond to the axes of the minimum-
drag spheroid found in Section 4.2 (for given R, Rm, and S) while initial a1, . . . ,an1 , b1, . . . ,bn2 should be set
zero.
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Figure 4a shows three minimum-drag shapes, having the volume of the unit sphere, for R = Rm = 3 and
S = 0, 1, 2. In the case of S = 0, which corresponds to the Oseen equations, the minimum-drag shape was
obtained by the approach presented in [32]. For the three shapes, Tables 1 and 2 present corresponding drag
coefficient CD, the constant in the optimality condition (103), error ‖ · ‖ in satisfying (103), and parameters in
the representation (135)–(136). Among those three shapes, the one for S = 1 is shortest. Let C∗D be the drag
coefficient for the unit sphere. Figure 4b interpolates the ratio CD/C∗D for R = Rm = 3 based on three obtained
values for S = 0,1,2. Figures 3a and 4b show that the drag ratios CD/C∗D for the minimum-drag spheroids and
minimum-drag shapes for same R, Rm, and S are sufficiently close.
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(a) cross section of minimum-drag shapes (b) interpolated drag ratio CD/C∗D

Figure 4: Minimum-drag shapes and the interpolated drag ratio CD/C∗D for R = Rm = 3 and S = 0,1,2.

Table 1: Drag coefficient CD, the constant in the optimality condition (103), and error ‖ · ‖ in satisfying (103)
for the minimum-drag shapes for R = Rm = 3 and S = 0, 1, and 2.

S = 0 S = 1 S = 2
CD 1.64828 1.36736 1.81103

constant −3.63472×10−1 −2.35380 −3.66957
error 1.58348×10−3 3.94289×10−3 4.91428×10−3

9 Conclusions

This work has developed an approach of generalized analytic functions to the MHD problem of an electrically
conducting viscous incompressible flow past a solid body of revolution under the assumptions that the applied
magnetic field and body’s axis of revolution are aligned with the flow at infinity and that the body and fluid have
same magnetic permeability. In the three complementary cases: (a) Rm 6= 0, RmR 6= M2 (S 6= 1); (b) Rm = 0;
and (c) RmR = M2 (S = 1) all assuming M 6= 0, the velocity field, pressure and magnetic fields in and out the
immersed body are represented by four generalized analytic functions. In particular, in case (a), the fields are
represented by two H-analytic functions and two r-analytic functions; in case (b), the magnetic field is constant
everywhere, and the velocity and pressure are represented by two H-analytic functions; and in case (c), the
fields are represented by one H-analytic function and three r-analytic functions. r-Analytic functions, whose
real and imaginary parts are harmonic, are related to the Stokes equations, whereas H-analytic functions have
the real and imaginary parts satisfying the modified Helmholtz equation and are related to the Oseen equations.
Namely the difference in the number of r-analytic and H-analytic functions in the solutions in cases (a) and (c)
contributes to the peculiarity of the case of S = 1.

In all three cases (a), (b), and (c), the MHD problem has been reduced to integral equations for unknown
boundary values of the involved generalized analytic functions based on the generalized Cauchy integral for-
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Table 2: Parameters in the representation (135)–(136) for the minimum-drag shapes for R = Rm = 3 and S = 0,
1, and 2.

S = 0 S = 1 S = 2
γ 1.01196396246 1.01366399904 1.01131424639
a0 6.29221950407×10−1 6.50248611262×10−1 5.93267526768×10−1

a1 −9.43328552499×10−2 −9.23964575126×10−2 −1.17578599834×10−1

a2 −1.37355103545×10−2 −6.7092264183×10−3 −2.61378349707×10−2

a3 1.98202204631×10−3 2.34809221062×10−3 −1.57412245298×10−3

a4 – 4.22269308778×10−4 −3.89459211608×10−5

a5 – −1.08999300292×10−4 −2.62129253651×10−5

b0 2.00004216653 1.87568864891 2.13349213677
b1 8.69011301008×10−2 1.00707086887×10−1 8.57434199435×10−2

b2 1.39653034146×10−4 2.70040905434×10−4 −1.52613634178×10−3

b3 2.83047975928×10−3 1.85753309456×10−3 1.31075784337×10−3

b4 – −1.0430097082×10−4 −1.10494890615×10−5

b5 – −7.96297414857×10−5 −8.91048112023×10−6

mula. Solutions to the integral equations have been represented by a finite functional series with series co-
efficients determined by quadratic error minimization and have been shown to coincide with the series-form
solutions for sphere with high accuracy.

The necessary optimality condition (103) for minimum-drag shapes subject to the volume constraint has
been obtained by Mironov’s shape variation approach. In the absence of the magnetic field, it reduces to
those for the Stokes and Oseen equations, and coincides with the one for the Navier-Stokes equations. It has
been shown analytically that regardless of magnitudes of R, Rm, and S, the minimum-drag shapes have conic
endpoints with the angle of 2π/3 counted from the axis of revolution. Remarkably, the minimum-drag shapes
for the Stokes, Oseen, and Navier-Stokes equations have the same property. The numerical analysis has shown
that the minimum-drag shapes are fore-and-aft symmetric and that for R = Rm = 3, the minimum-drag shape
for S = 1 has the largest drag ratio and smallest aspect ratio. Also, for same R, Rm, and S, the drag coefficients
for the minimum-drag spheroids and minimum-drag shapes are sufficiently close.
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